Брайан Керниган - UNIX — универсальная среда программирования
- Название:UNIX — универсальная среда программирования
- Автор:
- Жанр:
- Издательство:Финансы и статистика
- Год:1992
- Город:Москва
- ISBN:5-289-00253-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брайан Керниган - UNIX — универсальная среда программирования краткое содержание
В книге американских авторов — разработчиков операционной системы UNIX — блестяще решена проблема автоматизации деятельности программиста, системной поддержки его творчества, выходящей за рамки языков программирования. Профессионалам открыт богатый "встроенный" арсенал системы UNIX. Многочисленными примерами иллюстрировано использование языка управления заданиями shell.
Для программистов-пользователей операционной системы UNIX.
UNIX — универсальная среда программирования - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Попытка открыть несуществующий файл является ошибкой. Системный вызов creat
позволяет создать новые файлы или переписать старые.
int perms;
fd = creat(name, perms);
Вызов creat
возвращает дескриптор файла, если можно создать файл name, и -1 в противном случае. Если файл не существует, creat
создает его с правами доступа , определяемыми аргументом perms
. Существующий файл creat
сокращает до нулевой длины, т.е. применение creat
к уже существующему файлу не является ошибкой (права доступа при этом не изменяются). Безотносительно к правам доступа файл, к которому было обращение creat
, открыт для записи.
Как известно из второй главы, с файлом связаны девять битов информации о защите, контролирующих разрешение на чтение, запись или выполнение, так что число из трех восьмеричных цифр удобно для спецификации этой информации. Например, 0755 дает разрешение владельцу файла читать, писать и выполнять его, а чтение и выполнение файла доступно любому пользователю. Не забывайте о первом нуле, который определяет восьмеричные числа в языке Си.
Иллюстрацией изложенного может служить упрощенная версия cp
. Ее главный недостаток состоит в том, что она копирует только один файл и не разрешает использовать в качестве второго аргумента каталог. Кроме того, наша версия не сохраняет права доступа файла-источника; в дальнейшем мы покажем, как это исправить.
/* cp: minimal version */
#include
#define PERMS 0644 /* RW for owner, R for group, others */
char *progname;
main(argc, argv) /* cp: copy f1 to f2 */
int argc;
char *argv[];
{
int f1, f2, n;
char buf[BUFSIZ];
progname = argv[0];
if (argc != 3)
error("Usage: %s from to", progname);
if ((f1 = open(argv[1], 0)) == -1)
error("can't open %s", argv[1]);
if ((f2 = creat(argv[2], PERMS)) == -1)
error("can't create %s", argv[2]);
while ((n = read(f1, buf, BUFSIZ)) > 0)
if (write(f2, buf, n) != n)
error("write error", (char*)0);
exit(0);
}
error
мы обсудим ниже.
Число файлов, которые одновременно могут быть открыты программой, ограничено (обычно порядка 20; см. NOFILE
в ). Поэтому любая программа, которой предстоит обрабатывать много файлов, должна быть готова неоднократно использовать одни и те же дескрипторы файлов. Системный вызов close
разрывает связь между именем и дескриптором файла, освобождая дескриптор для использования с некоторым другим файлом. Завершение программы посредством exit
и возврат из основной программы закрывают все открытые файлы. Вызов системы unlink удаляет файл из файловой системы.
errno
Обсуждаемые здесь системные вызовы, а по сути все системные вызовы, могут вызывать ошибки. Обычно они сигнализируют об ошибке, возвращая значение -1. Иногда полезно знать, какая именно ошибка произошла, поэтому системные вызовы, когда это приемлемо, оставляют номер ошибки во внешней целой переменной, называемой errno
. (Значение различных номеров ошибок объясняется во введении к разд. 2 справочного руководства по UNIX.) С помощью errno
ваша программа может определить, например, чем вызвана неудача при открытии файла — тем, что он не существует, или тем, что у вас нет разрешения на его чтение. Кроме того, есть массив символьных строк sys_errlist
, индексируемый errno
, который переводит число в строку, передающую смысл ошибки. Наша версия error использует эти структуры данных:
error(s1, s2) /* print error message and die */
char *s1, *s2;
{
extern int errno, sys_nerr;
extern char *sys_errlist[], *progname;
if (progname)
fprintf(stderr, "%s: ", progname);
fprintf(stderr, s1, s2);
if (errno > 0 && errno < sys_nerr)
fprintf (stderr, " (%s)", sys_errlist[errno]);
fprintf(stderr, "\n");
exit(1);
}
Errno
первоначально равна нулю и всегда должна быть меньше, чем sys_herr.
Она не становится нулевой вновь при нормальной работе, поэтому вы должны обнулять ее после каждой ошибки, если ваша программа будет продолжать выполняться. Сообщения об ошибках в нашей версии cp
появляются следующим образом:
$ cp foo bar
cp: can't open foo
(Нет такого файла или каталога)
$ date >foo; chmod 0 foo
Создать нечитаемый файл
$ cp too bar
cp: can't open foo
(В разрешении отказано)
$
lseek
Файл ввода-вывода обычно последовательный: каждый read
или write
занимает место в файле непосредственно после использованного при предыдущем вызове. Однако при необходимости файл может быть прочитан или записан в произвольном порядке. Системный вызов lseek
позволяет перемещаться по файлу, не осуществляя ни чтения, ни записи:
int fd, origin;
long offset, pos, lseek();
pos = lseek(fd, offset, origin);
Текущая позиция в файле с дескриптором fd
перемещается к позиции offset
, которая отсчитывается относительно места, определяемого origin
. Последующие процессы чтения или записи будут начинаться с этой позиции. Origin
может иметь значения 0, 1, 2, задавая тем самым начало отсчета значения offset
— от начала, от текущей позиции или от конца файла соответственно.
Возвращаемое значение есть новая абсолютная позиция или -1 при ошибке. Например, при добавлении информации в файл нужно дойти до его конца, а затем выполнить запись:
lseek(fd, 0L, 2);
Чтобы вернуться обратно к началу ("перемотать"), необходимо вызвать
lseek(fd, 0L, 0);
Для определения текущей позиции следует выполнить
pos = lseek(fd, 0L, 1);
Обратите внимание на аргумент 0L
: смещение есть длинное целое. ('l' в lseek означает 'long' — длинный, чтобы отличить его от системного вызова seek
в шестой версии, где используются короткие целые.)
С помощью lseek
можно обращаться с файлами как с большими массивами, однако при этом время доступа к ним возрастает. Например, следующая функция читает любое число байтов из любого места в файле:
get(fd, pos, buf, n) /* read n bytes from position pos */
int fd, n;
long pos;
char *buf;
{
if (lseek(fd, pos, 0) == -1) /* get to pos */
return -1;
return read(fd, buf, n);
}
Модифицируйте readslow
так, чтобы обрабатывать имя файла в качестве аргумента, если оно присутствует. Добавьте -е
:
$ readslow -е
заставляет readslow
искать конец входного потока, прежде чем начать чтение. Каковы функции lseek
при работе с программным каналом?
Перепишите efopen
из гл. 6, чтобы вызвать error.
7.2 Файловая система: каталоги
Наша следующая тема — как ориентироваться в иерархии каталогов. При этом мы будем использовать не новые системные вызовы, а лишь несколько старых в новом контексте. В качестве примера приведем функцию spname
, которая пытается справиться с неверно написанными именами файлов. Функция
Интервал:
Закладка: