Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Тут можно читать онлайн Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДМК Пресс, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-94074-448-1
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - описание и краткое содержание, автор Энтони Уильямс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать книгу онлайн бесплатно, автор Энтони Уильямс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Следовательно, при тестировании производительности многопоточной программы лучше замерять результаты в максимально широком спектре конфигураций, чтобы можно было составить целостное представление о масштабируемости. Как минимум, следует прогнать тесты на однопроцессорной машине и на машине с максимальным числом процессорных ядер, которое вы можете себе позволить.

10.3. Резюме

В этой главе мы рассмотрели различные виды ошибок, связанных с параллелизмом, — от взаимоблокировок и активных блокировок до гонок за данными и других проблематичных состояний гонки. Были описаны различные методы поиска ошибок. Я сформулировал вопросы, над которыми следует поразмыслить, дал рекомендации по написанию тестопригодного кода и рассказал о том, как структурировать тесты для параллельных программ. И, наконец, мы затронули вопрос о некоторых служебных компонентах, которые могут оказать помощь в процессе тестирования.

Приложение А.

Краткий справочник по некоторым конструкциям языка С++

Новый стандарт С++ отнюдь не исчерпывается поддержкой параллелизма; в нем появилось немало других языковых средств и новых библиотек. В этом приложении я вкратце расскажу о тех новых возможностях, которые используются в библиотеке многопоточности и встречаются в этой книге. За исключением модификатора thread_local(рассматриваемого в разделе А.8), все они не имеют прямого отношения к параллелизму, однако важны и (или) полезны для написания многопоточного кода. Я ограничился лишь теми конструкциями, которые либо необходимы (например, ссылки на r -значения), либо делают код проще и яснее. Поначалу разобраться в программе, где применяются эти конструкции, будет трудно, но, познакомившись с ними поближе, вы согласитесь, что, вообще говоря, включающий их код проще, а не сложнее для понимания. По мере распространения С++11 описываемые средства будут встречаться в программах все чаще.

А теперь, без дальнейших предисловий, начнем с изучения ссылок на r-значения — средства, которое широко используется в библиотеке Thread Library для передачи владения (потоками, блокировками и вообще всем на свете) от одного объекта другому.

А.1. Ссылки на r -значения

Всякий, кто программировал на С++, знаком со ссылками; в С++ ссылки служат для создания альтернативного имени существующего объекта. Любой доступ к объекту по ссылке, в том числе для модификации, приводит к манипуляциям с исходным объектом. Например:

int var = 42; │ Создаем ссылку

int& ref = var;←┘ на var

ref = 99; │ В результате присваивания ссылке

assert (var == 99);←┘ изменен оригинал

Ссылки, к которым мы все давно привыкли, являются ссылками на l-значения. Термин l-значение появился еще в языке С и обозначает любую конструкцию, которая может находиться в левой части выражения присваивания, — именованные объекты, объекты, созданные в стеке или в куче, или члены других объектов, то есть сущности, расположенные по определенному адресу в памяти. Термин r-значение также происходит из С и обозначает конструкции, которые могут находиться только в правой части выражения присваивания, — например, литералы и временные объекты. Ссылки на l -значения можно связать только с l -значениями, но не с r -значениями. Так, невозможно написать

int& i = 42;

потому что 42 — это r -значение. Впрочем, это не совсем верно; всегда разрешалось связывать r -значение с константной ссылкой на l -значение:

int const& i = 42;

Однако в стандарте это исключение сделано сознательно задолго до появления ссылок на r -значения, и смысл его в том, чтобы разрешить передавать временные объекты функциям, принимающим ссылки. Благодаря этому механизму становятся возможны неявные преобразования, например, можно написать:

void print(std::string const& s);

print("hello");

Как бы то ни было, в стандарте C++11 официально введены ссылки на r-значения , которые связываются только с r -значениями, но не с l -значениями, и объявляются с помощью двух знаков амперсанда:

int&& i = 42;

int j = 42;

int&& k = j;

Таким образом, функцию можно перегрузить в зависимости от того, являются параметры l -значениями или r -значениями, — один вариант будет принимать ссылку на l -значение, другой — на r -значение. Эта возможность — краеугольный камень семантики перемещения .

A.1.1. Семантика перемещения

r -значения — это обычно временные объекты, поэтому их можно спокойно модифицировать; если известно, что параметр функции — r-значение, то его можно использовать как временную память, то есть «позаимствовать» его содержимое без ущерба для корректности программы. Это означает, что вместо копирования параметра, являющегося r -значением, мы можем просто переместить его содержимое. В случае больших динамических структур это позволяет сэкономить на выделении памяти и оставляет простор для оптимизации.

Рассмотрим функцию, которая принимает в качестве параметра std::vectorи хочет иметь его внутреннюю копию для модификации, так чтобы не затрагивать оригинал. Раньше мы для этого должны были принимать параметр как const-ссылку на l -значение и делать внутреннюю копию:

void process_copy(std::vector const& vec_) {

std::vector vec(vec_);

vec.push_back(42);

}

При этом функция может принимать как l -значения, так и r -значения, но копирование производится всегда. Однако, если добавить перегруженный вариант, который принимает ссылку на r -значение, то в этом случае можно будет избежать копирования, поскольку нам точно известно, что оригинал разрешается модифицировать:

void process_copy(std::vector&& vec) {

vec.push_back(42);

}

Если функция является конструктором класса, то можно умыкнуть содержимое r -значения и воспользоваться им для создания нового экземпляра. Рассмотрим класс, показанный в листинге ниже. В конструкторе по умолчанию он выделяет большой блок памяти, а в деструкторе освобождает его.

Листинг А.1.Класс с перемещающим конструктором

class X {

private:

int* data;

public:

X() : data(new int[1000000]) {}

~X() {

delete [] data;

}

X(const X& other) : ← (1)

data(new int[1000000]) {

std::copy(other.data, other.data + 1000000, data);

}

X(X&& other) : ← (2)

data(other.data) {

other.data = nullptr;

}

};

Копирующий конструктор (1)определяется как обычно: выделяем новый блок памяти и копируем в него данные. Но теперь у нас есть еще один конструктор, который принимает ссылку на r -значение (2). Это перемещающий конструктор . В данном случае мы копируем только указатель на данные, а в объекте otherостается нулевой указатель. Таким образом, мы обошлись без выделения огромного блока памяти и сэкономили время на копировании данных из r -значения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Энтони Уильямс читать все книги автора по порядку

Энтони Уильямс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Параллельное программирование на С++ в действии. Практика разработки многопоточных программ отзывы


Отзывы читателей о книге Параллельное программирование на С++ в действии. Практика разработки многопоточных программ, автор: Энтони Уильямс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x