Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Тут можно читать онлайн Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДМК Пресс, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-94074-448-1
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - описание и краткое содержание, автор Энтони Уильямс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать книгу онлайн бесплатно, автор Энтони Уильямс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как отмечалось во введении, стандартные атомарные типы позволяют не только избежать неопределённого поведения, связанного с гонкой за данные; они еще дают возможность задать порядок операций в потоках. Принудительное упорядочение лежит в основе таких средств защиты данных и синхронизации операций, как std::mutexи std::future<>. Помня об этом, перейдём к материалу, составляющему главное содержание этой главы: аспектам модели памяти, относящимся к параллелизму, и тому, как с помощью атомарных операций можно синхронизировать данные и навязать порядок доступа к памяти.

5.3. Синхронизация операций и принудительное упорядочение

Пусть имеются два потока, один из которых заполняет структуру данных, а другой читает ее. Чтобы избежать проблематичного состояния гонки, первый поток устанавливает флаг, означающий, что данные готовы, а второй не приступает к чтению данных, пока этот флаг не установлен. Описанный сценарий демонстрируется в листинге ниже.

Листинг 5.2.Запись и чтение переменной в разных потоках

#include

#include

#include

std::vector data;

std::atomic data_ready(false);

void reader_thread() {

while (!data_ready.load()) { ← (1)

std::this_thread::sleep(std::milliseconds(1));

}

std::cout << "Ответ=" << data[0] << "\n";← (2)

}

void writer_thread() {

data.push_back(42); ← (3)

data_ready = true; ← (4)

}

Оставим пока в стороне вопрос о неэффективности цикла ожидания готовности данных (1). Для работы этой программы он действительно необходим, потому что в противном случае разделение данных между потоками становится практически бесполезным: каждый элемент данных должен быть атомарным. Вы уже знаете, что неатомарные операции чтения (2)и записи (3)одних и тех же данных без принудительного упорядочения приводят к неопределённому поведению, поэтому где-то упорядочение должно производиться, иначе ничего работать не будет.

Требуемое упорядочение обеспечивают операции с переменной data_readyтипа std::atomicи делается это благодаря отношениям происходит-раньше и синхронизируется-с , заложенным в модель памяти. Запись данных (3)происходит-раньше записи флага data_ready (4), а чтение флага (1)происходит-раньше чтения данных (2). Когда прочитанное значение data_ready (1)равно true, операция записи синхронизируется-с этой операцией чтения, что приводит к порождению отношения происходит-раньше. Поскольку отношение происходит-раньше транзитивно, то запись данных (3)происходит-раньше записи флага (4), которая происходит-раньше чтения значения trueиз этого флага (1), которое в свою очередь происходит-раньше чтения данных (2). И таким образом мы получаем принудительное упорядочение: запись данных происходит-раньше чтения данных, и программа работает правильно. На рис. 5.2 изображены важные отношения происходит-раньше в обоих потоках. Я включил две итерации цикла whileв потоке-читателе.

Рис 52Принудительное задание упорядочения неатомарных операций с помощью - фото 10

Рис. 5.2.Принудительное задание упорядочения неатомарных операций с помощью атомарных

Все это может показаться интуитивно очевидным — разумеется, операция записи значения происходит раньше операции его чтения! В случае атомарных операций по умолчанию это действительно так (на то и умолчания), однако подчеркну: у атомарных операций есть и другие возможности для задания требований к упорядочению, и скоро я о них расскажу.

Теперь, когда вы видели, как отношения происходит-раньше и синхронизируется-с работают на практике, имеет смысл поговорить о том, что же за ними стоит. Начнем с отношения синхронизируется-с.

5.3.1. Отношение синхронизируется-с

Отношение синхронизируется-с возможно только между операциями над атомарными типами. Операции над структурой данных (например, захват мьютекса) могут обеспечить это отношение, если в структуре имеются атомарные типы и определенные в ней операции выполняют необходимые атомарные операции. Однако реальным источником синхронизации всегда являются операции над атомарными типами.

Идея такова: подходящим образом помеченная атомарная операция записи Wнад переменной xсинхронизируется-с подходящим образом помеченной атомарной операцией чтения над переменной x, которая читает значение, сохраненное либо данной операцией записи ( W), либо следующей за ней атомарной операцией записи над xв том же потоке, который выполнил первоначальную операцию W,либо последовательностью атомарных операций чтения-модификации-записи над x(например, fetch_add()или compare_exchange_weak()) в любом потоке, при условии, что значение, прочитанное первым потоком в этой последовательности, является значением, записанным операцией W(см. раздел 5.3.4).

Пока оставим в стороне слова «подходящим образом помеченная», потому что по умолчанию все операции над атомарными типами помечены подходящим образом. По существу сказанное выше означает ровно то, что вы ожидаете: если поток А сохраняет значение, а поток В читает это значение, то существует отношение синхронизируется-с между сохранением в потоке А и загрузкой в потоке В — как в листинге 5.2.

Уверен, вы догадались, что нюансы как раз и скрываются за словами «подходящим образом помеченная». Модель памяти в С++ допускает применение различных ограничений на упорядочение к операциям над атомарными типами, и именно это и называется пометкой. Варианты упорядочения доступа к памяти и их связь с отношением синхронизируется-с рассматриваются в разделе 5.3.3. А пока отступим на один шаг и поговорим об отношении происходит-раньше.

5.3.2. Отношение происходит-раньше

Отношение происходит-раньше — основной строительный блок механизма упорядочения операций в программе. Оно определяет, какие операции видят последствия других операций и каких именно. В однопоточной программе всё просто: если в последовательности выполняемых операций одна стоит раньше другой, то она и происходит-раньше. Иначе говоря, если операция А в исходном коде предшествует операции В, то А происходит-раньше В. Это мы видели в листинге 5.2: запись в переменную data (3)происходит-раньше записи в переменную data_ready (4). В общем случае между операциями, которые входят в состав одного предложения языка, нет отношения происходит-раньше, поскольку они не упорядочены. По-другому то же самое можно выразить, сказав, что порядок не определён. Мы знаем, что программа, приведённая в следующем листинге, напечатает " 1,2" или " 2,1", но что именно, неизвестно, потому что порядок двух обращений к get_num()не определён.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Энтони Уильямс читать все книги автора по порядку

Энтони Уильямс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Параллельное программирование на С++ в действии. Практика разработки многопоточных программ отзывы


Отзывы читателей о книге Параллельное программирование на С++ в действии. Практика разработки многопоточных программ, автор: Энтони Уильямс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x