Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Тут можно читать онлайн Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДМК Пресс, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-94074-448-1
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - описание и краткое содержание, автор Энтони Уильямс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать книгу онлайн бесплатно, автор Энтони Уильямс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В разделе 5.3.1 я упоминал, что можно получить отношение синхронизируется-с между операцией сохранения атомарной переменной и операцией загрузки той же атомарной переменной в другом потоке, даже если между ними выполняется последовательность операций чтения-модификации-записи, — при условии, что все операции помечены надлежащим признаками. Теперь, когда мы знаем обо всех возможных «признаках» упорядочения, я могу подробнее осветить этот вопрос. Если операция сохранения помечена одним из признаков memory_order_release, memory_order_acq_relили memory_order_seq_cst, а операция загрузки — одним из признаков memory_order_consume, memory_order_acquireили memory_order_seq_cst, и каждая операция в цепочке загружает значение, записанное предыдущей операцией, то такая цепочка операций составляет последовательность освобождений , и первая в ней операция сохранения синхронизируется-с (в случае memory_order_acquireили memory_order_seq_cst) или предшествует-по-зависимости (в случае memory_order_consume) последней операции загрузки. Любая атомарная операция чтения-модификации-записи в цепочке может быть помечена произвольным признаком упорядочения (даже memory_order_relaxed).

Чтобы попять, что это означает и почему так важно, рассмотрим значение типа atomic, которое используется как счетчик countэлементов в разделяемой очереди (см. листинг ниже).

Листинг 5.11.Чтение из очереди с применением атомарных операций

#include

#include

std::vector queue_data; std::atomic count;

void populate_queue() {

unsigned const number_of_items = 20;

queue_data.clear();

for (unsigned i = 0; i < number_of_items; ++i) {

queue_data.push_back(i);

} ← (1) Начальное сохранение

count.store(number_of_items, std::memory_order_release);

}

void consume_queue_items() {

while (true) { ← (2) Операция ЧМЗ

int item_index;

if (

(item_index =

count.fetch_sub(1, std::memory_order_acquire)) <= 0) {

wait_for_more_items();←┐ Ждем дополнительных

continue; (3) элементов

}

process(queue_data[item_index-1]);←┐ Чтение из queue_data

} (4) безопасно

int main() {

std::thread a(populate_queue);

std::thread b(consume_queue_items);

std::thread с(consume_queue_items);

a.join();

b.join();

c.join();

}

Можно, например, написать программу так, что поток, производящий данные, сохраняет их в разделяемом буфере, а затем вызывает функцию count.store(numbеr_of_items, memory_order_release) (1), чтобы другие потоки узнали о готовности данных. Потоки- потребители, читающие данные из очереди, могли бы затем вызвать count.fetch_sub(1, memory_order_acquire) (2), чтобы проверить, есть ли элементы в очереди перед тем, как фактически читать из разделяемого буфера (4). Если счетчик countстал равен 0, то больше элементов нет, и поток должен ждать (3).

Если поток-потребитель всего один, то всё хорошо; fetch_sub()— это операция чтения с семантикой memory_order_acquire, а операция сохранения была помечена признаком memory_order_release, поэтому сохранение синхронизируется-с загрузкой, и поток может читать данные из буфера. Но если читают два потока, то второй вызов fetch_sub()увидит значение, записанное при первом вызове, а не то, которое было записано операцией store. Без правила о последовательности освобождений между вторым и первым потоком не было бы отношения происходит-раньше, поэтому было бы небезопасно читать из разделяемого буфера, если только и для первого вызова fetch_sub()тоже не задана семантика memory_order_release; однако, задав ее, мы ввели бы излишнюю синхронизацию между двумя потоками-потребителями. Без правила о последовательности освобождений или задания семантики memory_order_releaseдля всех операций fetch_subне было бы никакого механизма, гарантирующего, что операции сохранения в queue_data видны второму потребителю, следовательно, мы имели бы гонку за данными. К счастью, первый вызов fetch_sub() на самом деле участвует в последовательности освобождений, и вызов store()синхронизируется-с вторым вызовом fetch_sub(). Однако отношения синхронизируется-с между двумя потоками-потребителями все еще не существует. Это изображено на рис. 5.7, где пунктирные линии показывают последовательность освобождений, а сплошные — отношения происходит-раньше.

Рис 57Последовательность освобождений для операций с очередью из листинга - фото 15

Рис. 5.7.Последовательность освобождений для операций с очередью из листинга 5.11

В цепочке может быть сколько угодно звеньев, но при условии, что все они являются операциями чтения-модификации-записи, как fetch_sub(), операция store()синхронизируется-с каждым звеном, помеченным признаком memory_order_acquire. В данном примере все звенья одинаковы и являются операциями захвата, но это вполне могли бы быть разные операции с разной семантикой упорядочения доступа к памяти.

Хотя большая часть отношений синхронизации проистекает из семантики упорядочения доступа к памяти, применённой к операциям над атомарными переменными, существует возможность задать дополнительные ограничения на упорядочение с помощью барьеров (fence).

5.3.5. Барьеры

Библиотека атомарных операций была бы неполна без набора барьеров. Это операции, которые налагают ограничения на порядок доступа к памяти без модификации данных. Обычно они используются в сочетании с атомарными операциями, помеченными признаком memory_order_relaxed. Барьеры — это глобальные операции, они влияют на упорядочение других атомарных операций в том потоке, где устанавливается барьер. Своим названием барьеры обязаны тому, что устанавливают в коде границу, которую некоторые операции не могут пересечь. В разделе 5.3.3 мы говорили, что компилятор или сам процессор вправе изменять порядок ослабленных операций над различными переменными. Барьеры ограничивают эту свободу и вводят отношения происходит-раньше и синхронизируется-с, которых до этого не было.

В следующем листинге демонстрируется добавление барьера между двумя атомарными операциями в каждом потоке из листинга 5.5.

Листинг 5.12.Ослабленные операции можно упорядочить с помощью барьеров

#include

#include

#include

std::atomic x, y;

std::atomic z;

void write_x_then_y() {

x.store(true, std::memory_order_relaxed); ← (1)

std::atomic_thread_fence(std::memory_order_release);← (2)

y.store(true, std::memory_order_relaxed); ← (3)

}

void read_y_then_x() {

while (!y.load(std::memory_order_relaxed)); ← (4)

std::atomic_thread_fence(std::memory_order_acquire);← (5)

if (x.load(std::memory_order_relaxed)) ← (6)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Энтони Уильямс читать все книги автора по порядку

Энтони Уильямс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Параллельное программирование на С++ в действии. Практика разработки многопоточных программ отзывы


Отзывы читателей о книге Параллельное программирование на С++ в действии. Практика разработки многопоточных программ, автор: Энтони Уильямс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x