Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
- Название:Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2012
- Город:Москва
- ISBN:978-5-94074-448-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.
Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Самая серьезная с точки зрения распараллеливания проблема в интерфейсе контейнера std::map<>
— его итераторы. Можно написать итератор так, что доступ к контейнеру с его помощью для чтения и модификации будет безопасен, но это амбициозная задача. Для корректной работы нужно учесть, что другой поток может удалить элемент, на который итератор сейчас ссылается, а это совсем непросто. Поэтому при первом подходе к проектированию интерфейса потокобезопасной справочной таблицы итераторы мы опустим. Памятуя о том, насколько сильно интерфейс std::map<>
(и прочих стандартных ассоциативных контейнеров) зависит от итераторов, пожалуй, будет разумнее сразу отказаться от попыток смоделировать их и вместо этого придумать новый интерфейс с нуля.
Справочной таблице нужно всего несколько основных операций:
• добавить новую пару ключ/значение;
• изменить значение, ассоциированное с данным ключом;
• удалить ключ и ассоциированное с ним значение;
• получить значение, ассоциированное с данным ключом, если такой ключ существует.
Есть также несколько полезных операций, относящихся к контейнеру в целом, например: проверить, пуст ли контейнер, получить полный текущий список ключей или полное множество пар ключ/ значение.
Если придерживаться базовых рекомендаций, касающихся потокобезопасности, например, не возвращать ссылки и защищать мьютексом все тело каждой функции-члена, то все эти операции будут безопасны. Угроза возникновения гонки возникает прежде всего при добавлении новой пары ключ/значение; если два потока одновременно добавляют новое значение, то лишь один из них будет первым, а второй, следовательно, получит ошибку. Один из способов решить эту проблему состоит в том, чтобы объединить операции добавления и изменения в одной функции-члене, как мы проделали в DNS-кэше в листинге 3.13.
С точки зрения интерфейса, остается еще лишь один интересный момент: фраза «если такой ключ существует» в описании операции получения ассоциированного значения. Можно, например, предоставить пользователю возможность задать некий результат «по умолчанию», который будет возвращен, если указанного ключа нет.
mapped_type get_value(
key_type const& key, mapped_type default_value);
В таком случае можно использовать сконструированный по умолчанию экземпляр типа mapped_type
, если default_value
не было задано явно. Эту идею можно развить и возвращать не просто экземпляр mapped_type
, а объект типа std::pair
, где bool
указывает, было ли найдено значение. Другой вариант — использовать интеллектуальный указатель, ссылающийся на значение; если он равен NULL
, то значение не было найдено.
Как уже отмечалось, после определения интерфейса (в предположении, что состояний гонки в нем нет), обеспечить потокобезопасность можно, заведя единственный мьютекс, который дет захватываться в начале каждой функции-члена для защиты внутренней структуры данных. Однако тем самым мы сведем на нет все возможности распараллеливания, которые могли бы открыться в результате наличия отдельных функций для чтения и модификации структуры данных. Отчасти исправить ситуацию можно было бы, воспользовавшись мьютексом, который разрешает нескольким потокам читать данные, но только одному — изменять их, например, классом boost::shared_mutex
из листинга 3.13. Это, конечно, несколько улучшило бы общую картину, но при таком решении модифицировать структуру данных по-прежнему может только один поток. В идеале хотелось бы добиться большего.
Как и в случае очереди (см. раздел 6.2.3), чтобы ввести мелкогранулярные блокировки, нужно внимательно изучить особенности структуры данных, а не пытаться обернуть уже имеющийся контейнер, например std::map<>
. Есть три общепринятых подхода к реализации ассоциативного контейнера, каковым является, в частности, справочная таблица:
• двоичное, например красно-черное, дерево;
• отсортированный массив;
• хеш-таблица.
Двоичное дерево плохо приспособлено для распараллеливания — каждый просмотр или модификация должны начинается с доступа к корневому узлу, который, следовательно, нужно блокировать. Блокировку, конечно, можно освобождать по мере спуска вниз по дереву, но в целом это немногим лучше блокирования всей структуры целиком.
Отсортированный массив еще хуже, потому что заранее невозможно сказать, в каком месте массива может оказаться требуемое значение, поэтому придется заводить одну блокировку на весь массив. Остается только хеш-таблица. В предположении, что число кластеров фиксировано, вопрос о том, в каком кластере находится ключ, является свойством только лишь самого ключа и хеш-функции. А это значит, что мы сможем завести по одной блокировке на каждый кластер. Если еще и использовать мьютекс, который поддерживает несколько читателей и одного писателя, то коэффициент распараллеливания увеличится в N раз, где N — число кластеров. Недостаток в том, что нужна хорошая хеш-функция для ключа. В стандартной библиотеке С++ имеется шаблон std::hash<>
, которым можно воспользоваться для этой цели. Он уже специализирован для таких фундаментальных типов, как int
, и некоторых библиотечных типов, например std::string
, а пользователь может без труда написать специализации и для других типов ключа. Если, следуя примеру стандартных неупорядоченных контейнеров, указать в качестве параметра шаблона тип объекта-функции, которая выполняет хеширование, то пользователь сможет сам решить, специализировать ли ему шаблон std::hash<>
для типа своего ключа или предоставить отдельную хеш-функцию.
Теперь обратимся собственно к коду. Как могла бы выглядеть реализация потокобезопасной справочной таблицы? Один из вариантов показан ниже.
Листинг 6.11.Потокобезопасная справочная таблица
template
typename Hash = std::hash >
class threadsafe_lookup_table {
private:
class bucket_type {
private:
typedef std::pair bucket_value;
typedef std::list bucket_data;
typedef typename bucket_data::iterator bucket_iterator;
bucket_data data;
mutable boost::shared_mutex mutex;←
(1)
bucket_iterator find_entry_for(Key const& key) const {←
(2)
return std::find_if(data.begin(), data.end(),
[&](bucket_value const& item)
{ return item.first == key; });
}
public:
Value value_for(
Key const& key, Value const& default_value) const {
boost::shared_lock lock(mutex);←
(3)
bucket_iterator const found_entry = find_entry_for(key);
return (found_entry==data.end()) ?
default_value : found_entry->second;
}
void add_or_update_mapping(
Key const& key, Value const& value) {
Интервал:
Закладка: