Алексей Молчанов - Системное программное обеспечение. Лабораторный практикум

Тут можно читать онлайн Алексей Молчанов - Системное программное обеспечение. Лабораторный практикум - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство Array Издательство «Питер», год 2005. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Системное программное обеспечение. Лабораторный практикум
  • Автор:
  • Жанр:
  • Издательство:
    Array Издательство «Питер»
  • Год:
    2005
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-469-00391-4
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Алексей Молчанов - Системное программное обеспечение. Лабораторный практикум краткое содержание

Системное программное обеспечение. Лабораторный практикум - описание и краткое содержание, автор Алексей Молчанов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге рассматриваются базисные теоретические основы, необходимые для построения компиляторов, основные технологические приемы и методы их реализации. В ней приведены различные варианты заданий для выполнения лабораторного практикума по курсу «Системное программное обеспечение», а также примеры выполнения этих заданий. В каждом примере подробно рассматриваются все особенности его выполнения, как на этапе подготовки необходимой математической базы, так и на этапе программной реализации. В лабораторных работах автор обращает внимание на основные сложности, связанные с ее выполнением, а также на возможные типичные ошибки и недочеты, дает рекомендации по возможностям программной реализации, отличным от кода, приводимого в примерах.
Книга ориентирована на студентов, обучающихся в технических вузах по специальностям, связанным с вычислительной техникой. Но она будет также полезна всем, чья деятельность так или иначе касается разработки программного обеспечения.

Системное программное обеспечение. Лабораторный практикум - читать онлайн бесплатно полную версию (весь текст целиком)

Системное программное обеспечение. Лабораторный практикум - читать книгу онлайн бесплатно, автор Алексей Молчанов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

на триаду «CONST», берем и запоминаем ее значение }

if (Trd[2].OpType = OP_LINK)

and (listTriad[Trd.Links[2]].TrdType = TRD_CONST)

then begin

Trd.OpTypes[2]:= OP_CONST;

Trd.Values[2]:=

listTriad[Trd.Links[2]][1].ConstVal;

end;

end;{ Если триада помечена ссылкой, то линейный участок

кода закончен – очищаем информационные структуры идентификаторов}

if Trd.IsLinked then ClearTreeInfo;

if Trd.TrdType = TRD_ASSIGN then { Если триада имеет }

begin { тип «присвоение» }

{ и если ее второй операнд – константа, }

if TestOperConst(Trd[2],listTriad,iOp2) then

{запоминаем его значение в информационной структуре переменной}

Trd[1].VarLink.Info:= TConstInfo.Create(iOp2);

end

else { Если триада – одна из линейных операций, }

if Trd.TrdType in TriadLineSet then

begin { и если оба ее операнда – константы, }

if TestOperConst(Trd[1],listTriad,iOp1)

and TestOperConst(Trd[2],listTriad,iOp2) then

begin { тогда вычисляем значение операции, }

Ops[1].ConstVal:=

CalcTriad(Trd.TrdType,iOp1,iOp2);

{ запоминаем его в триаде «CONST», которую

записываем в список вместо прежней триады }

listTriad.Items[i]:= TTriad.Create(TRD_CONST,Ops);

{Если на прежнюю триаду была ссылка, сохраняем ее}

listTriad[i].IsLinked:= Trd.IsLinked;

Trd.Free; { Уничтожаем прежнюю триаду }

end;

end;

end;

end;

constructor TDepInfo.Create(iInfo: longint);

{ Создание информационной структуры для чисел зависимости }

begin

inherited Create; {Вызываем конструктор базового класса}

iDep:= iInfo; { Запоминаем число зависимости }

end;

procedure TDepInfo.SetInfo(iIdx: integer; iInfo: longint);

{ Функция записи числа зависимости }

begin iDep:= iInfo; end;

function TDepInfo.GetInfo(iIdx: integer): longint;

{ Функция чтения числа зависимости }

begin Result:= iDep; end;

function CalcDepOp(listTriad: TTriadList;

Op: TOperand): longint;

{Функция вычисления числа зависимости для операнда триады}

begin

Result:= 0;

case Op.OpType of { Выборка по типу операнда }

OP_VAR: { Если это переменная – смотрим ее информационную

структуру, и если она есть, берем число зависимости }

if Op.VarLink.Info <> nil then Result:=

Op.VarLink.Info.Info[0];

OP_LINK: { Если это ссылка на триаду,

то берем число зависимости триады }

Result:= listTriad[Op.TriadNum].Info;

end{case};

end;

function CalcDep(listTriad: TTriadList;

Trd: TTriad): longint;

{ Функция вычисления числа зависимости триады }

var iDepTmp: longint;

begin

Result:= CalcDepOp(listTriad,Trd[1]);

iDepTmp:= CalcDepOp(listTriad,Trd[2]);

{ Число зависимости триады есть число на единицу большее,

чем максимальное из чисел зависимости ее операндов }

if iDepTmp > Result then Result:= iDepTmp+1

else Inc(Result);

Trd.Info:= Result;

end;

procedure OptimizeSame(listTriad: TTriadList);

{ Процедура оптимизации путем исключения лишних операций }

var

i,j,iStart,iCnt,iNum: integer;

Ops: TOpArray;

Trd: TTriad;

begin { Начало линейного участка – начало списка триад }

iStart:= 0;

ClearTreeInfo; { Очищаем информационные структуры

таблицы идентификаторов }

Ops[1].OpType:= OP_LINK; { Заполняем операнды }

Ops[2].OpType:= OP_CONST; { для триады типа «SAME» }

Ops[2].ConstVal:= 0;

iCnt:= listTriad.Count-1;

for i:=0 to iCnt do { Для всех триад списка }

begin { выполняем алгоритм }

Trd:= listTriad[i];

if Trd.IsLinked then {Если триада помечена ссылкой, }

begin { то линейный участок кода закончен – очищаем }

ClearTreeInfo; { информационные структуры идентификаторов и }

iStart:= i; { запоминаем начало линейного участка }

end;

for j:=1 to 2 do { Если любой операнд триады ссылается

if Trd[j].OpType = OP_LINK then { на триаду «SAME», }

begin { то переставляем ссылку на предыдущую, }

iNum:= Trd[j].TriadNum;{ совпадающую с ней триаду }

if listTriad[iNum].TrdType = TRD_SAME then

Trd.Links[j]:= listTriad[iNum].Links[1];

end;

if Trd.TrdType = TRD_ASSIGN then { Если триада типа }

begin { «присвоение» – запоминаем число зависимости

связанной с нею переменной }

Trd[1].VarLink.Info:= TDepInfo.Create(i+1);

end

else { Если триада – одна из линейных операций }

if Trd.TrdType in TriadLineSet then

begin { Вычисляем число зависимости триады }

CalcDep(listTriad,Trd);

for j:=iStart to i-1 do { На всем линейном участке }

begin { ищем совпадающую триаду с таким же }

if Trd.IsEqual(listTriad[j]) { числом зависимости }

and (Trd.Info = listTriad[j].Info) then

begin { Если триада найдена, запоминаем ссылку }

Ops[1].TriadNum:= j;

{ запоминаем ее в триаде типа «SAME», которую

записываем в список вместо прежней триады }

listTriad.Items[i]:=

TTriad.Create(TRD_SAME,Ops);

listTriad[i].IsLinked:= Trd.IsLinked; { Если на

прежнюю триаду была ссылка, сохраняем ее }

Trd.Free; { Уничтожаем прежнюю триаду }

Break; { Прерываем поиск }

end;

end;

end{if};

end{for};

end;

end.

Модуль создания списка триад на основе дерева разбора

Листинг П3.12. Создание списка триад на основе дерева разбора

unit TrdMake; {!!! Зависит от входного языка!!!}

interface

{ Модуль, обеспечивающий создание списка триад на основе

структуры синтаксического разбора }

uses LexElem, Triads, SyntSymb;

function MakeTriadList(symbTop: TSymbol;

listTriad: TTriadList): TLexem;

{ Функция создания списка триад начиная от корневого

символа дерева синтаксического разбора.

Функция возвращает nil при успешном выполнении, иначе

она возвращает ссылку на лексему, где произошла ошибка }

implementation

uses LexType, TrdType;

function GetLexem(symbOp: TSymbol): TLexem;

{ Функция, проверяющая, является ли операнд лексемой }

begin

case symbOp.Rule of

0: Result:= symbOp.Lexem; {Нет правил – это лексема!}

27,28: Result:= symbOp[0].Lexem; { Если дочерний

символ построен по правилу № 27 или 28, то это лексема }

19,26: Result:= GetLexem(symbOp[1]) { Если это

арифметические скобки, надо проверить,

не является ли лексемой операнд в скобках }

else Result:= nil; { Иначе это не лексема }

end;

end;

function MakeTriadListNOP(symbTop: TSymbol;

listTriad: TTriadList): TLexem;

{ Функция создания списка триад начиная от корневого

символа дерева синтаксического разбора

(без добавления триады NOP в конец списка) }

var

Opers: TOpArray; { массив операндов триад }

iIns1,iIns2,iIns3: integer; { переменные для запоминания

индексов триад в списке }

function MakeOperand(

iOp{номер операнда},

iSymOp{порядковый номер символа в синтаксической конструкции},

iMin{минимальная позиция триады в списке},

iSymErr{номер лексемы, на который

позиционировать ошибку}: integer;

var iIns: integer{индекс триады в списке}): TLexem;

{ Функция формирования ссылки на операнд }

var lexTmp: TLexem;

begin

lexTmp:= GetLexem(symbTop[iSymOp]); { Проверяем, }

if lexTmp <> nil then { является ли операнд лексемой }

with lexTmp do { Если да, то берем имя операнда }

begin { в зависимости от типа лексемы }

if LexType = LEX_VAR then

begin

if VarInfo.VarName = NAME_RESULT then

begin{Убеждаемся, что переменная имеет допустимое имя}

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алексей Молчанов читать все книги автора по порядку

Алексей Молчанов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Системное программное обеспечение. Лабораторный практикум отзывы


Отзывы читателей о книге Системное программное обеспечение. Лабораторный практикум, автор: Алексей Молчанов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x