Миран Липовача - Изучай Haskell во имя добра!
- Название:Изучай Haskell во имя добра!
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2012
- Город:Москва
- ISBN:978-5-94074-749-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Миран Липовача - Изучай Haskell во имя добра! краткое содержание
Язык Haskell имеет множество впечатляющих возможностей, но главное его свойство в том, что меняется не только способ написания кода, но и сам способ размышления о проблемах и возможных решениях. Этим Haskell действительно отличается от большинства языков программирования. С его помощью мир можно представить и описать нестандартным образом. И поскольку Haskell предлагает совершенно новые способы размышления о проблемах, изучение этого языка может изменить и стиль программирования на всех прочих.
Ещё одно необычное свойство Haskell состоит в том, что в этом языке придаётся особое значение рассуждениям о типах данных. Как следствие, вы помещаете больше внимания и меньше кода в ваши программы.
Вне зависимости от того, в каком направлении вы намерены двигаться, путешествуя в мире программирования, небольшой заход в страну Haskell себя оправдает. А если вы решите там остаться, то наверняка найдёте чем заняться и чему поучиться!
Эта книга поможет многим читателям найти свой путь к Haskell.
Отображения, монады, моноиды и другое! Всё сказано в названии: «Изучай Хаскель во имя добра!» – весёлый иллюстрированный самоучитель по этому сложному функциональному языку.
С помощью оригинальных рисунков автора, отсылке к поп-культуре, и, самое главное, благодаря полезным примерам кода, эта книга обучает основам функционального программирования так, как вы никогда не смогли бы себе представить.
Вы начнете изучение с простого материала: основы синтаксиса, рекурсия, типы и классы типов. Затем, когда вы преуспеете в основах, начнется настоящий мастер-класс от профессионала: вы изучите, как использовать аппликативные функторы, монады, застежки, и другие легендарные конструкции Хаскеля, о которых вы читали только в сказках.
Продираясь сквозь образные (и порой безумные) примеры автора, вы научитесь:
• Смеяться в лицо побочным эффектам, поскольку вы овладеете техниками чистого функционального программирования.
• Использовать волшебство «ленивости» Хаскеля для игры с бесконечными наборами данных.
• Организовывать свои программы, создавая собственные типы, классы типов и модули.
• Использовать элегантную систему ввода-вывода Хаскеля, чтобы делиться гениальностью ваших программ с окружающим миром.
Нет лучшего способа изучить этот мощный язык, чем чтение «Изучай Хаскель во имя добра!», кроме, разве что, поедания мозга его создателей. Миран Липовача (Miran Lipovača) изучает информатику в Любляне (Словения). Помимо его любви к Хаскелю, ему нравится заниматься боксом, играть на бас-гитаре и, конечно же, рисовать. У него есть увлечение танцующими скелетами и числом 71, а когда он проходит через автоматические двери, он притворяется, что на самом деле открывает их силой своей мысли.
Изучай Haskell во имя добра! - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
foldingFunction (x:y:ys) "+" = (x + y):ys
foldingFunction (x:y:ys) "–" = (y – x):ys
foldingFunction xs numberString = read numberString:xs
Мы уложились в четыре образца. Образцы будут сопоставляться транслятором в порядке записи. Вначале функция свёртки проверит, равен ли текущий элемент "*"
. Если да, то функция возьмёт список, например [3,4,9,3]
, и присвоит двум первым элементам имена x
и y
соответственно. В нашем случае x
будет соответствовать тройке, а y
– четвёрке; ys
будет равно [9,3]
. В результате будет возвращён список, состоящий из [9,3]
, и в качестве первого элемента будет добавлено произведение тройки и четвёрки. Таким образом, мы выталкиваем два первых числа из стека, перемножаем их и помещаем результат обратно в стек. Если элемент не равен "*"
, сопоставление с образцом продолжается со следующего элемента, проверяя "+"
, и т. д.
Если элемент не совпадёт ни с одним оператором, то мы предполагаем, что это строка, содержащая число. Если это так, то мы вызываем функцию read
с этой строкой, чтобы получить число, добавляем его в вершину предыдущего стека и возвращаем получившийся стек.
Для списка ["2","3","+"]
наша функция начнёт свёртку с самого левого элемента. Стек в начале пуст, то есть представляет собой []
. Функция свёртки будет вызвана с пустым списком в качестве стека (аккумулятора) и "2"
в качестве элемента. Так как этот элемент не является оператором, он будет просто добавлен в начало стека []
. Новый стек будет равен [2]
, функция свёртки будет вызвана со значением [2]
в качестве стека и "3"
в качестве элемента; функция вернёт новый стек, [3,2]
. Затем функция свёртки вызывается в третий раз, со стеком равным [3,2]
и элементом "+"
. Это приводит к тому, что оба числа будут вытолкнуты из стека, сложены, а результат будет помещён обратно в стек. Результирующий стек равен [5]
– это число мы вернём.
Погоняем нашу функцию:
ghci> solveRPN "10 4 3 + 2 * -"
-4.0
ghci> solveRPN "2 3.5 +"
5.5
ghci> solveRPN "90 34 12 33 55 66 + * - +"
-3947.0
ghci> solveRPN "90 34 12 33 55 66 + * - + -"
4037.0
ghci> solveRPN "90 3.8 -"
86.2
Отлично, работает!
Добавление новых операторов
Чем ещё хороша наша функция – её можно легко модифицировать для поддержки других операторов. Операторы не обязательно должны быть бинарными. Например, мы можем создать оператор log
, который выталкивает из стека одно число и заталкивает обратно его логарифм. Также можно создать тернарный оператор, который будет извлекать из стека три числа и помещать обратно результат. Или, к примеру, реализовать оператор sum
, который будет поднимать все числа из стека и суммировать их.
Давайте изменим нашу функцию так, чтобы она понимала ещё несколько операторов.
solveRPN :: String –> Double
solveRPN = head . foldl foldingFunction [] . words
where
foldingFunction (x:y:ys) "*" = (x * y):ys
foldingFunction (x:y:ys) "+" = (x + y):ys
foldingFunction (x:y:ys) "–" = (y – x):ys
foldingFunction (x:y:ys) "/" = (y / x):ys
foldingFunction (x:y:ys) "^" = (y ** x):ys
foldingFunction (x:xs) "ln" = log x:xs
foldingFunction xs "sum" = [sum xs]
foldingFunction xs numberString = read numberString:xs
Прекрасно. Здесь /
– это, конечно же, деление, и **
– возведение в степень для действительных чисел. Для логарифма мы осуществляем сравнение с образцом для одного элемента и «хвоста» стека, потому что нам нужен только один элемент для вычисления натурального логарифма. Для оператора суммы возвращаем стек из одного элемента, который равен сумме элементов, находившихся в стеке до этого.
ghci> solveRPN "2.7 ln"
0.9932517730102834
ghci> solveRPN "10 10 10 10 sum 4 /"
10.0
ghci> solveRPN "10 10 10 10 10 sum 4 /"
12.5
ghci> solveRPN "10 2 ^"
100.0
На мой взгляд, это делает функцию, способную вычислять произвольное выражение в обратной польской записи с дробными числами, которое может быть расширено 10 строчками кода, просто-таки расчудесной.
ПРИМЕЧАНИЕ.Как можно заметить, функция не устойчива к ошибкам. Если передать ей бессмысленный вход, она вывалится с ошибкой. Мы сделаем её устойчивой к ошибкам, определив её тип как solveRPN :: String –> Maybe Double
, как только разберёмся с монадами (они не страшные, честно!). Можно было бы написать безопасную версию функции прямо сейчас, но довольно-таки скучным будет сравнение с Nothing
на каждом шаге. Впрочем, если у вас есть желание, попробуйте! Подсказка: можете использовать функцию reads
, чтобы проверить, было ли чтение успешным.
Из аэропорта в центр
Рассмотрим такую ситуацию. Ваш самолёт только что приземлился в Англии, и у вас арендована машина. В скором времени запланировано совещание, и вам надо добраться из аэропорта Хитроу в Лондон настолько быстро, насколько это возможно (но без риска!).
Существуют две главные дороги из Хитроу в Лондон, а также некоторое количество более мелких дорог, пересекающих главные. Путь от одного перекрёстка до другого занимает чётко определённое время. Выбор оптимального пути возложен на вас: ваша задача – добраться до Лондона самым быстрым способом! Вы начинаете с левой стороны и можете переехать на соседнюю главную дорогу либо ехать прямо.
Как видно по рисунку, самый короткий путь – начать движение по главной дороге B, свернуть на А, проехав немного, вернуться на B и снова ехать прямо. В этом случае дорога занимает 75 минут. Если бы мы выбрали любой другой путь, нам потребовалось бы больше времени.

Наша задача – создать программу, которая примет на вход некоторое представление системы дорог и напечатает кратчайший путь. Вот как может выглядеть входная информация в нашем случае:
50
10
30
5
90
20
40
2
25
10
8
0
Чтобы разобрать входной файл в уме, представьте его в виде дерева и разбейте систему дорог на секции. Каждая секция состоит из дороги A, дороги B и пересекающей дороги. Чтобы представить это в виде дерева, мы предполагаем, что есть последняя замыкающая секция, которую можно проехать за 0 секунд, так как нам неважно, откуда именно мы въедем в город: важно только, что мы в городе.
Будем решать проблему за три шага – так же мы поступали при создании вычислителя выражений в ОПЗ:
1. На минуту забудьте о языке Haskell и подумайте, как бы вы решали эту задачу в уме. При решении предыдущей задачи мы выясняли, что для вычисления в уме нам нужно держать в памяти некоторое подобие стека и проходить выражение по одному элементу за раз.
Читать дальшеИнтервал:
Закладка: