Камерон Хьюз - Параллельное и распределенное программирование на С++

Тут можно читать онлайн Камерон Хьюз - Параллельное и распределенное программирование на С++ - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство Издательский дом «Вильямс», год 2004. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Параллельное и распределенное программирование на С++
  • Автор:
  • Жанр:
  • Издательство:
    Издательский дом «Вильямс»
  • Год:
    2004
  • Город:
    МоскваСанкт-ПетербургКиев
  • ISBN:
    ISBN 5-8459-0686-5 (рус.)ISBN 0-13-101376-9 (англ.)
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Камерон Хьюз - Параллельное и распределенное программирование на С++ краткое содержание

Параллельное и распределенное программирование на С++ - описание и краткое содержание, автор Камерон Хьюз, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге представлен архитектурный подход к распределенному и параллельному программированию с использованием языка С++. Здесь описаны простые методы программирования параллельных виртуальных машин и основы разработки кластерных приложений. Эта книга не только научит писать программные компоненты, предназначенные для совместной работы в сетевой среде, но и послужит надежным «путеводителем» по стандартам для программистов, которые занимаются многозадачными и многопоточными приложениями. Многолетний опыт работы привел авторов книги к использованию агентно-ориентированной архитектуры, а для минимизации затрат на обеспечение связей между объектами системы они предлагают применить методологию «классной доски».
Эта книга адресована программистам, проектировщикам и разработчикам программных продуктов, а также научным работникам, преподавателям и студентам, которых интересует введение в параллельное и распределенное программирование с использованием языка С++.

Параллельное и распределенное программирование на С++ - читать онлайн бесплатно полную версию (весь текст целиком)

Параллельное и распределенное программирование на С++ - читать книгу онлайн бесплатно, автор Камерон Хьюз
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6. Обеспечим установку атрибутов планирования с помощью атрибутного объекта.

7. Установим стратегию планирования.

8. Создадим поток с помощью атрибутного объекта.

Последовательное выполнение этих действий позволяет установить стратегию планирования и приоритет потока до его создания. Для динамического изменения стратегии планирования и приоритета используйте функции pthread_setschedparam() и pthread_setschedprio().

Синопсис

#include

int pthread_setschedparam(pthread_t thread,

int policy,

const struct sched_param *param);

int pthread_getschedparam(

pthread_t thread,

int *restrict policy,

struct sched_param *restrict param);

int pthread_setschedprio(pthread_t thread, int prio);

Функция pthread_setschedparam() устанавливает как стратегию планирования, так и приоритет потока без использования атрибутного объекта. Параметр thread содержит идентификатор потока, параметр policy — новую стратегию планирования и параметр param — значения, связанные с приоритетом. Функция pthread_getschedparam() сохраняет значения стратегии планирования и приоритета в параметрах policy и param соответственно. При успешном выполнении обе функции возвращают число 0 ,в противном случае — код ошибки. Условия, при которых эти функции могут завершиться неудачно, перечислены в табл. 4.7.

Таблица4.7. Условия потенциального неудачного завершения функций установки стратегии планирования и приоритета

Функции

Условия отказа

pthread_getschedparam

• Параметр thread не ссылается на существующий поток

pthread_setschedparam

• Некорректен параметр policy или один из членов структуры, на которую указывает параметр param

• Параметр policy или один из членов структуры, на которую указывает параметр param, содержит значение, которое не поддерживается в данной среде

• Вызывающий поток не имеет соответствующего разрешения на установку значений приоритета или стратегии планирования для заданного потока

• Параметр thread не ссылается на существующий поток

• Данная реализация не позволяет приложению заменить один из параметров планирования заданным значением

pthread_setschedprio

• Параметр prio не подходит к стратегии планирования заданного потока

• Параметр prio имеет значение, которое не поддерживается в данной среде

• Вызывающий поток не имеет соответствующего разрешения на установку приоритета для заданного потока

• Параметр thread не ссылается на существующий поток

• Данная реализация не позволяет приложению заменить значение приоритета заданным

Функция pthread_setschedprio() используется для установки значения приоритета выполняемого потока, идентификатор которого задан параметром thread В результате выполнения этой функции текущее значение приоритета будет заменено значением параметра prio. При успешном выполнении функция возвращает число 0 в противном случае — код ошибки. При неуспешном выполнении функции приоритет потока изменен не будет. Условия, при которых эта функция может завершиться неуспешно, также перечислены в табл. 4.7.

ПРИМЕЧАНИЕ: к изменению стратегии планирования или приоритета выполняемого потока необходимо отнестись очень осторожно. Это может непредсказуемым образом повлиять на общую эффективность приложения. Потоки с более высоким приоритетом будут вытеснять потоки с более низким, что приведет к зависанию либо к тому, что поток будет постоянно выгружаться с процессора и поэтому не сможет завершить выполнение.

Установка области конкуренции потока

Область конкуренции потока определяет, какое множество потоков с одинаковыми стратегиями планирования и приоритетами будут состязаться за использование процессора. Область конкуренции потока устанавливается его атрибутным объектом.

Синопсис

#include

int pthread_attr_setscope(pthread_attr_t *attr,

int contentionscope);

int pthread_attr_getscope(

const pthread_attr_t *restrict_attr,

int *restrict contentionscope) ;

Функция pthread_attr_setscope() устанавливает член объекта атрибутов потока (заданного параметром attr), связанный с областью конкуренции. Область конкуренции потока будет установлена равной значению параметра contentionscope, который может принимать следующие значения.

PTHREAD_SCOPE_SYSTEMОбласть конкуренции системного уровня PTHREAD_SCOPE_PROCESSОбласть конкуренции уровня процесса

Функция pthread_attr_getscope() возвращает атрибут области конкуренции из объекта атрибутов потока, заданного параметром attr. При успешном выполнении значение области конкуренции сохраняется в параметре contentionscope. Обе функции при успешном выполнении возвращают число 0 ,в противном случае — код ошибки-

Использование функции sysconf ()

Знание пределов, устанавливаемых системой на использование ресурсов, позволит вашему приложению эффективно управлять ресурсами. Например, максимальное количество потоков, приходящихся на один процесс, составляет верхнюю границу числа рабочих потоков, которое может быть создано процессом. Функция sysconf () используется для получения текущего значения конфигурируемых системных пределов или опций

Синопсис

#include

#include

Параметр name - это запрашиваемая системная переменная. Функция возвращает значения, соответствующие стандарту POSIX IEEE Std. 1003.1-2001 для заданных системных переменных. Эти значения можно сравнить с константами, определенными вашей реализацией стандарта, чтобы узнать, насколько они согласуются между собой. Для ряда системных переменных существуют константы-аналоги, относящиеся к потокам, процессам и семафорам (см. табл. 4.8).

Если параметр name не действителен, функция sysconf () возвращает число -1и устанавливает переменную errno, свидетельствующую об ошибке. Однако для заданного параметра name предел может быть не определен, и функция может возвращать число -1 как действительное значение. В этом случае переменная errno не устанавливается. Необходимо отметить, что неопределенный предел не означает безграничность ресурса Это просто означает, что не определен максимальный предел и (при условии доступности системных ресурсов) могут поддерживаться более высокие предельные значения. Рассмотрим пример вызова функции sysconf ():

if(PTHREAD_STACK_MIN == (sysconf(_SC_THREAD_STACK_MIN))){

//...

}

Значение константы PTHREAD_STACK_MINсравнивается со значением, возвращаемым функцией sysconf (), вызванной с параметром _SC_THREAD_STACK_MIN.

Таблица4.8. Системные переменные и соответствующие им символьные константы

Переменная Значение Описание
_SC_THREADS _POSIX_THREADS Поддерживает потоки
_SC_THREAD_ATTR_ STACKADDR _POSIX_THREAD_ATTR_ STACKADDR Поддерживает атрибут адреса стека потока
_SC_THREAD_ATTR_ STACKSIZE _POSIX_THREAD_ATTR_ STACKSIZE Поддерживает атрибут размера стека потока
_SC_THREAD_STACK_ MIN PTHREAD_STACK_MIN Минимальный размер стека потока в байтах
_SC_THREAD_THREADS_MAX PTHREAD_THREADS MAX Максимальное количество потоков на процесс
_SC_THREAD_KEYS_MAX PTHREAD_KEYS_MAX Максимальное количество ключей на процесс
_SC_THREAD_PRIO_INHERIT _POSIX_THREAD_PRIO_ INHERIT Поддерживает опцию наследования приоритета
_SC_THREAD_PRIO _POSIX THREAD_PRIO Поддерживает опцию приоритета потока
_SC_THREAD_PRIORITY_ SCHEDULING _POSIX_THREAD_PRIORITY_SCHEDULING Поддерживает опцию планирования приоритета потока
_SC_THREAD_PROCESS_SHARED _POSIX_THREAD_PROCESS_SHARED Поддерживает синхронизацию на уровне процесса
_SC_THREAD_SAFE_ FUNCTIONS _POSIX_THREAD_SAFE_FUNCTIONS Поддерживает функции безопасности потока
_SC_THREAD_ DESTRUCTOR_ ITERATIONS _PTHREAD_THREAD_DESTRUCTOR_ITERATIONS Определяет количество попыток, направленных на разрушение потоковых данных при завершении потока
_SC_CHILD_MAX CHILD_MAX Максимальное количество процессов, разрешенных для UID
_SC_PRIORITY_ SCHEDULING _POSIX_PRIORITY_ SCHEDULING Поддерживает планирование процессов
_SC_REALTIME_ SIGNALS _POSIX_REALTIME_SIGNALS Поддерживает сигналы реального времени
_SC_XOPEN_REALTIME_THREADS _XOPEN_REALTIME_ THREADS Поддерживает группу потоковых средств реального времени X/Open POSIX
_SC_STREAM_MAX STREAM_MAX Определяет количество потоков данных, которые один процесс может открыть одновременно
_SC_SEMAPHORES _POSIX_SEMAPHORES Поддерживает семафоры
_SC_SEM_NSEMS_MAX SEM_NSEMS_MAX Определяет максимальное количество семафоров, которое может иметь процесс
_SC_SEM_VALUE_MAX SEM_VALUE_MAX Определяет максимальное значение, которое может иметь семафор
_SC_SHARED_MEMORY_ OBJECTS _POSIX_SHARED_MEMORY_OBJECTS Поддерживает объекты общей памяти

Управление критическими разделами

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Камерон Хьюз читать все книги автора по порядку

Камерон Хьюз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Параллельное и распределенное программирование на С++ отзывы


Отзывы читателей о книге Параллельное и распределенное программирование на С++, автор: Камерон Хьюз. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x