Камерон Хьюз - Параллельное и распределенное программирование на С++
- Название:Параллельное и распределенное программирование на С++
- Автор:
- Жанр:
- Издательство:Издательский дом «Вильямс»
- Год:2004
- Город:МоскваСанкт-ПетербургКиев
- ISBN:ISBN 5-8459-0686-5 (рус.)ISBN 0-13-101376-9 (англ.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Камерон Хьюз - Параллельное и распределенное программирование на С++ краткое содержание
Эта книга адресована программистам, проектировщикам и разработчикам программных продуктов, а также научным работникам, преподавателям и студентам, которых интересует введение в параллельное и распределенное программирование с использованием языка С++.
Параллельное и распределенное программирование на С++ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Реализации библиотек на основе стандартов
Библиотеки MPICH, PVM, MICO и POSIX Threads реализованы на основе стандартов. Это означает, что разработчики ПО могут быть уверены, что эти реализации широко доступны и переносимы с одной платформы на другую. Эти библиотеки используются многими разработчиками ПО во всем мире. Библиотеку POSIX Threads можно использовать с С++ для реализации многопоточного программирования. Если программа выполняется на компьютере с несколькими процессорами, то каждый поток может выполняться на отдельном процессоре, что позволяет говорить о реальной параллельности программирования. Если же компьютер содержит только один процессор, то иллюзия параллелизма обеспечивается за счет процесса переключения контекстов. Библиотека POSIX Threads позволяет реализовать, возможно, самый простой способ введения параллелизма в С++-программу. Если для использования библиотек MPICH, PVM и MICO необходимо предварительно побеспокоиться об их установке, то в отношении библиотеки POSIX Threads это излишне, поскольку среда любой операционной системы, которая согласована с POSIX-стандартом или новой спецификацией UNDC (версия 3), оснащена реализацией библиотеки POSIX Threads. Все библиотеки предлагают модели параллелизма, которые имеют незначительные различия. В табл. 1.2 показано, как каждую библиотеку можно использовать с С++.
Таблица 1.2. Использование библиотек MPICH, PVM, MICO и POSIX Threads с С++
MPICH Поддерживает крупномасштабное сложное программирование кластеров. Предпочтительно используется для модели SPMD. Также поддерживает SMP-, MPP- и многопользовательские конфигурации
PVMПоддерживает кластерное программирование гетерогенных сред. Легко
используется для однопользовательских (мелко- и среднемасштабных) ._____кластерных приложений. Также поддерживает МРР-конфигурации .
MICOПоддерживает и распределенное, и параллельное программирование.
Содержит эффективные средства поддержки агентно-ориентированного и мультиагентного программирования
POSIXПоддерживает параллельную обработку данных в одном приложении на
уровне функций или объектов. Позволяет воспользоваться преимуществами SMP- и МРР-конфигурации
В то время как языки со встроенной поддержкой параллелизма ограничены применением конкретных моделей, С++-разработчик волен смешивать различные модели параллельного программирования. При изменении структуры приложения C++-разработчик в случае необходимости выбирает другие библиотеки, соответствующие новому сценарию работы.
Среды для параллельного и распределенного программирования
Наиболее распространенными средами для параллельного и распределенного программирования являются кластеры, SMP- и МРР-компьютеры.
Кластеры — это коллекции, состоящие из нескольких компьютеров, объединенных сетью для создания единой логической системы. С точки зрения приложения такая группа компьютеров выглядит как один виртуальный компьютер. Под MPP-конфигурацией (Massively Parallel Processors — процессоры с массовым параллелизмом) понимается один компьютер, содержащий сотни процессоров, а под SMP-конфигурацией (symmetric multiprocessor — симметричный мультипроцессор) — единая система, в которой тесно связанные процессоры совместно используют общую память и информационный канал. SMP-процессоры разделяют общие ресурсы и являются объектами управления одной операционной системы. Поскольку эта книга представляет собой введение в параллельное и распределенное программирование, нас будут интересовать небольшие кластеры, состоящие из 8-32 процессоров, и многопроцессорные компьютеры с двумя-четырьмя процессорами. И хотя многие рассматриваемые здесь методы можно использовать в MPP- или больших SMP-средах, мы в основном уделяем внимание системам среднего масштаба.
Резюме
В этой книге представлен архитектурный подход к параллельному и распределенному программированию. При этом акцент ставится на определении естественного параллелизма в самой задаче и ее решении, который закрепляется в программной модели решения. Мы предлагаем использовать объектно-ориентированные методы, которые бы позволили справиться со сложностью параллельного и распределенного программирования, и придерживаемся следующего принципа: функция следует за формой. В отношении языка С++ используется библиотечный подход к обеспечению поддержки параллелизма. Рекомендуемые нами библиотеки базируются на национальных и международных стандартах. Каждая библиотека легко доступна и широко используется программистами во всем мире. Методы и идеи, представленные в этой книге, не зависят от конкретных изготовителей программных и аппаратных средств, общедоступны и опираются на открытые стандарты и открытые архитектуры. С++-программист и разработчик ПО может использовать различные модели параллелизма, поскольку каждая такая модель обусловливается библиотечными средствами. Библиотечный подход к параллельному и распределенному программированию дает С++-программисту гораздо большую степень гибкости по сравнению с использованием встроенных средств языка. Наряду с достоинствами, параллельное и распределенное программирование не лишено многих проблем, которые рассматриваются в следующей главе.
Проблемы параллельного и распределенного программирования
«Стремление обозначать точные значения любой физической величины (температура, плотность, напряженность потенциального поля или что-либо еще...) есть не что иное как смелая экстраполяция.»
Эрвин Шредингер (Erwin Shrodinger), Causality and Wave MechanicsВ базовой последовательной модели программирования инструкции компьютерной программы выполняются поочередно. Программа выглядит как кулинарный рецепт, в соответствии с которым для каждого действия компьютера задан порядок и объемы используемых «ингредиентов». Разработчик программы разбивает основную задачу ПО на коллекцию подзадач. Все задачи выполняются по порядку, и каждая из них должна ожидать своей очереди. Все программы имеют начало, середину и конец. Разработчик представляет каждую программу в виде линейной последовательности задач. Эти задачи необязательно должны находиться в одном файле, но их следует связать между собой так, чтобы, если первая задача по какой-то причине не завершила свою работу, то вторая вообще не начинала выполнение. Другими словами, каждая задача, прежде чем приступить к своей работе, должна ожидать до тех пор, пока не получит результатов выполнения предыдущей. В последовательной модели зачастую устанавливается последовательная зависимость задач. Это означает, что задаче А необходимы результаты выполнения задачи В, а задаче В нужны результаты выполнения задачи С, которой требуется что-то от задачи D и т.д. Если при выполнении задачи В по какой-то причине произойдет сбой, задачи С и D никогда не п риступят к работе. В таком последовательном мире разработчик привычно ориентирует ПО сначала на выполнение действия 1, затем — действия 2, за которым должно следовать действие 3 и т.д. Подобная последовательная модель настолько закрепилась в процессе проектирования и разработки ПО, что многие программисты считают ее незыблемой и не допускают мысли о возможности иного положения вещей. Решение каждой проблемы, разработка каждого алгоритма и планирование каждой структуры данных — все это делалось с мыслью о последовательном доступе компьютера к каждой инструкции или ячейке данных.
Читать дальшеИнтервал:
Закладка: