Камерон Хьюз - Параллельное и распределенное программирование на С++
- Название:Параллельное и распределенное программирование на С++
- Автор:
- Жанр:
- Издательство:Издательский дом «Вильямс»
- Год:2004
- Город:МоскваСанкт-ПетербургКиев
- ISBN:ISBN 5-8459-0686-5 (рус.)ISBN 0-13-101376-9 (англ.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Камерон Хьюз - Параллельное и распределенное программирование на С++ краткое содержание
Эта книга адресована программистам, проектировщикам и разработчикам программных продуктов, а также научным работникам, преподавателям и студентам, которых интересует введение в параллельное и распределенное программирование с использованием языка С++.
Параллельное и распределенное программирование на С++ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
// Функция-объект class some_class{ //.. .
operator(); //
};
template T mpiTask(T X) {
//
Т Result; Result = X() //. . .
}
Шаблонная функция mpiTask() будет работать с любым типом T,который имеет соответствующим образом определенную функцию operator ().
//. . .
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &TaskRank); MPI_Comm_size(MPI_COMM_WORLD, &WorldSize); //. . .
if(TaskRank == 0){ //. . .
user_defined_type M; mpiTask(M); //.. .
}
if(TaskRank == N){ //.. .
some_other_userdefined_type N; mpiTask (N) ;
}
//----
Этот горизонтальный полиморфизм не имеет отношения к наследованию или виртуальным функциям. Поэтому, если наша MPI-задача получит свой ранг, а затем объявит тип объекта, в котором определена функция operator(), то при вызове функции mpiTask() ее поведение будет продиктовано содержимым метода operator(). Тогда, несмотря на идентичность всех процессов, запу щ енных посредством сценария mpirun,полиморфизм шаблонов и функций-объектов позволит всем MPI-задачам выполнять различную работу над различными данными.
Как упростить взаимодействие между MPI-задачами
Помимо упрощения и сокращения размеров кода МРТзадачи с помощью полиморфизма и шаблонов, мы можем также упростить взаимодействие между MPI-задачами, воспользовавшись преимуществами перегрузки операторов. Функции MPI_Send() и MPI_Recv() имеют следующий формат:
MPI_Send(Buffer, Count, MPI_LONG, TaskRank, Tag, Comm);
MPI_Recv(Buffer,Count,MPI_INT, TaskRank, Tag, Comm, &Status);
При вызове этих функций необходимо, чтобы пользователь указал тип применяемых здесь данных и буфер, предназначенный для хранения посылаемых или принимаемых данных. Спецификация типа посылаемых или принимаемых данных может иметь довольно громоздкий вид и чревата последующими ошибками при передаче неверного типа. В табл. 9.3 приведены прототипы MPI-функций отправки и приема данных и их краткое описание.
Таблица 9.3Прототипы MPI-функций отправки и приема данных
Функции Описание
#include «mpi.h»
int MPI_Send(void *Buffer,int Count, MPI_Datatype Туре, int Destination, int MessageTag, MPI_Comm Comm) ; Выполняет базовую отправку данных
int MPI_Send_init(void *Buffer,int Count, MPI_Datatype Type, int Destination, int MessageTag, MPI_Comm Comm, MPI_Request *Request); Инициализирует дескриптор для стандартной отправки данных
int MPI_Ssend(void *Buffer,int Count, MPI_Datatype Type, int Destination, int MessageTag, MPI_Comm Comm); Выполняет базовую отправку данных с синхронизацией
int MPI_Ssend_init(void *Buffer,int Count, MPI_Datatype Type, int Destination, int MessageTag, MPI_Comm Comm, MPI_Request *Request); Инициализирует дескриптор для стандартной отправки данных с синхронизацией
int MPI_Rsend(void *Buffer,int Count, MPI_Datatype Type, int Destination, int MessageTag, MPI_Comm Comm) ; Выполняет базовую отправкуданных с сигналом готовности
int MPI_Rsend_init(void *Buffer,int Count, MPI_Datatype Type, int Destination, int MessageTag, MPI_Comm Comm, MPI_Request *Request); Инициализирует дескриптор для стандартной отправки данных с сигналом готовности
int MPI_Isend(void *Buffer,int Count, MPI_Datatype Type, int Destination, int MessageTag, MPI_Comm Comm, MPI_Request *Request ); Запускает отправку без блокировки
int MPI_Issend(void *Buffer,int Count, MPI_Datatype Туре, int Destination, int MessageTag, MPI_Comm Comm, MPI_Request *Request); Запускает синхронную отправку без блокировки
int MPI_Irsend(void *Buffer,int Count, MPI_Datatype Туре, int Destination, int MessageTag, MPI_Comm Comm, MPI_Request *Request); Запускает неблокирующую отправкуданных с сигналом готовности
int MPI_Recv(void *Buffer,int Count, MPI__Datatype Type, int source, int MessageTag, MPI_Comm Comm, MPI_Status *Status); Выполняет базовый прием данных
int MPI_Recv_init(void *Buffer,int Count, MPI_Datatype Type, int source, int MessageTag, MPI_Comm Comm, MPI_Request *Request); Инициализирует дескриптор для приема данных
int MPI_Irecv(void *Buffer,int Count, MPI_Datatype Type, int source, int MessageTag, MPI_Comm Comm, MPI_Request *Request); Запускает прием данных без блокировки
int MPI_Sendrecv(void *sendBuffer, int SendCount, MPI_Datatype SendType, int Destination, int SendTag, void *recvBuffer, int RecvCount, MPI_Datatype RecvYype, int Source, int RecvTag, MPI_Comm Comm, MPI_Status *Status); Отправляет и принимает сообщение
int MPI_Sendrecv_replace(void *Buffer,int Count, MPI_Datatype Туре, int Destination, int SendTag,int Source,int RecvTag, MPI_Comm Comm, MPI_Status *Status); Отправляет и принимает сообщение с использованием единого буфера
Наша цель — обеспечить отправку и получение MPI-данных с помо щ ью потоково г о представления iostream-классов. Данные удобно отправлять, используя следую щ ий синтаксис.
//...
int X; float Y;
user_defined_type Z;
cout « X << Y « Z;
//...
Здесь разработчик не должен указывать типы данных при вставке их в объект cout. Для вывода этих данных трех типов достаточно определить оператор "<<". Анало г ично можно поступить при выделении данных из потоково г о объекта cin.
//...
int X; float Y;
user_defined_type Z;
cin >> X >> Y >> Z;
//...
В инструкции ввода данных их типы не задаются. Перегрузка операторов позволяет разработчику использовать этот метод для MPI-задач. Поток cout реализуется из класса ostream, а поток cin — из класса istream. В этих классах определены операторы "<<" и ">>" для встроенных С++-типов данных. Например, класс ostream содержит ряд перегруженных операторных функций "<<".
//.. .
ostream& operator<<(char с);
ostream& operator<<(unsigned char с);
ostream& operator<<(signed char с);
ostream& operator<<(const char *s);
ostream& operator<<(const unsigned char *s);
ostream& operator<<(const signed char *s);
ostream& operator<<(const void *p);
ostream& operator<<(int n);
ostream& operator<<(unsigned int n);
ostream& operator<<(long n);
ostream& operator<<(unsigned long n);
//.. .
С помощью этих определений пользователь классов ostream и istream применяет объекты cout и cin, не указывал типы передаваемых данных. Этот метод перегрузки можно использовать для упрощения МРI- взаимодействия. Мы рассмотрели идею PVM-потока в главе 6. Здесь мы применяем тот же подход к созданию MPI-потока, используя структуру классов istream и ostream в качестве руководства для разработки класса mpi_stream. Потоковые классы состоят из компонентов состояния, буфера и преобразования. Компонент состояния представлен классом ios; компонент буфера — классами streambuf, stringbuf или filebuf. Компонент преобразования обслуживается классами istream, ostream, istringstream, ostringstream, ifstream и ofstream. Компонент состояния отвечает за инкапсуляцию состояния потока. Класс ios включает формат потока, информацию о состоянии (работоспособное или состояние отказа), факт достижения конца файла (eof). Компонент буфера используется для хранения считываемых или записываемых данных. Классы преобразования предназначены для перевода данных встроенных типов в потоки байтов и обратно. UML-диаграмма семейства классов iostream показана на рис. 9.3.
Рис. 9.3. UML-диаграмма семейства классов iostream |
Перегрузка операторов «<<���» и «>>» для организации взаимодействия между MPI-задачами
Интервал:
Закладка: