У Клоксин - ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ

Тут можно читать онлайн У Клоксин - ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.7/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

У Клоксин - ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ краткое содержание

ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ - описание и краткое содержание, автор У Клоксин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга английских специалистов, содержащая описание основ логического программирования и особенностей языка Пролог – базового языка ЭВМ пятого поколения. Области применения этого языка связаны с разработкой экспертных систем, интеллектуальных баз данных, обработкой естественного языка, разработкой компиляторов ЭВМ. Книга полезна для первого ознакомления с языком Пролог.

ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ - читать онлайн бесплатно полную версию (весь текст целиком)

ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ - читать книгу онлайн бесплатно, автор У Клоксин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

A; B;…:- K, L,…

Хотя принятые предположения о форме записи дизъюнктов представляются произвольными, в них заложен некоторый мнемонический смысл. Если записать дизъюнкт, явно указав все знаки дизъюнкций и отрицаний и отделив литералы с отрицаниями от литералов без отрицаний, то получится примерно следующее;

(А # В #…) # (~К # -L #…)

что эквивалентно

(A # B # …) # ~(K & L & …)

Это в свою очередь эквивалентно (К & L &…) -› (А # В #…)

Если записать ',' вместо 'и', ';' вместо 'или' и ':-' вместо 'является следствием', то дизъюнкт естественным образом примет следующий вид:

A; B;…:- K, L,…

С учетом этих соглашений формула

(человек(адам) & человек(ева)) &((человек(Х) # ~мать(Х,Y)) # ~человек(Y))

записывается так:

человек(адам):-.

человек(ева):-.

человек(Х):- мать(Х,Y), человек(Y).

Это выглядит уже довольно знакомо. В действительности, это выглядит в точности как определение на Прологе того, что значит быть человеком. Однако другие формулы дают более загадочный результат. Так, для примера о выходном дне имеем:

выходной(Х); работает(крис,X):-.

выходной(Х); сердитый(крис); унылый(крис):-.

Сразу не так очевидно, чему это может соответствовать в Прологе. Этот вопрос будет подробнее рассмотрен в следующем разделе.

В приложении В представлена программа на Прологе, печатающая дизъюнкты в рассмотренном здесь виде. Так, дизъюнкты, приведенные в конце предыдущего раздела, в соответствии с принятыми соглашениями печатаются программой в следующем виде:

человек(f1(X)); король(Х):-.

король(Х):- почитает(f1(Х),Х).

10.4. Принцип резолюций и доказательство теорем

Теперь, когда мы имеем способ, позволяющий представлять формулы исчисления предикатов в такой аккуратной и привлекательной форме, рассмотрим, что можно делать с ними далее. Очевидно, можно исследовать вопрос о том, следует ли что-либо интересное из некоторой заданной совокупности высказываний. То есть интересно исследовать, к каким следствиям они приводят. Высказывания, которые исходно считаются истинными, называются аксиомами или гипотезами, а высказывания, которые следуют из них, называются теоремами. Введенные понятия согласуются с терминологией, используемой при описании такого подхода к математике, когда работа математика представляется как процесс получения все новых и новых интересных теорем из таких хорошо аксиоматизированных областей, какими являются теория множеств и теория чисел. В этом разделе будут кратко рассмотрены вопросы получения интересных следствий для заданного множества высказываний, то есть вопросы доказательства теорем.

В 60-х годах в этой области наблюдалась большая активность, связанная с возможностью использования вычислительных машин для автоматического доказательства теорем. Именно эта область научной деятельности, по-прежнему остающаяся источником новых идей и методов, дала жизнь идеям, легшим в основу Пролога. Одним из фундаментальных достижений того времени явилось открытие Дж. А. Робинсоном принципа резолюций и его применение к автоматическому доказательству теорем. Резолюция – это правило вывода, говорящее о том, как одно высказывание может быть получено из других. Используя принцип резолюций, можно полностью автоматически доказывать теоремы, выводя их из аксиом. Необходимо лишь решать, к каким из высказываний следует применять правило вывода, а правильные следствия из них будут строиться автоматически.

Правило резолюций разрабатывалось применительно к формулам, представленным в стандартной форме. Если заданы два дизъюнкта, связанных между собой определенным образом, то это правило породит новый дизъюнкт, являющийся следствием двух первых. Главная идея состоит в том, что, если одна и та же атомарная формула появляется как в левой части одного дизъюнкта, так и в правой части другого дизъюнкта, то дизъюнкт, получаемый в результате соединения этих двух дизъюнктов, из которых вычеркнута упоминавшаяся повторяющаяся формула, является следствием указанных дизъюнктов. Например,

Из

унылый(крист); сердитый(крис):- рабочий_день(сегодня), идет_дождь(сегодня).

и

неприятный(крис):- сердитый(крис), усталый(крис).

следует

унылый(крис); неприятный(крис):- рабочий_день(сегодня), идет_дождь(сегодня), усталый(крис).

На естественном языке это звучит так. Если сегодня рабочий день и идет дождь, то Крис – унылый или сердитый. Кроме того, если Крис сердитый и усталый, то он неприятен. Поэтому, если сегодня рабочий день, идет дождь и Крис усталый, то Крис является унылым или неприятным.

В действительности, мы сильно упростили ситуацию, опустив два момента. Прежде всего, ситуация усложняется, когда дизъюнкты содержат переменные. В такой ситуации две атомарные формулы не обязательно должны быть идентичными – они должны быть лишь «сопоставимы». Кроме того, дизъюнкт, являющийся следствием двух других дизъюнктов, получается в результате их соединения (с удалением повторяющейся формулы) с помощью некоторой дополнительной операции. Эта операция включает в себя «конкретизацию» переменных до такой степени, чтобы две сопоставляемые формулы стали идентичными. Используя терминологию Пролога, можно сказать, что, если имелось два дизъюнкта, представленных в виде структур, и было выполнено сопоставление соответствующих подструктур, то результат соединения этих структур и был бы представлением нового дизъюнкта. Второе упрощение состоит в том, что в общем случае, правило резолюций допускает сопоставление нескольких литералов в правой части одного дизъюнкта с несколькими литералами в левой части другого дизъюнкта. Здесь будут рассматриваться лишь примеры, когда из каждого дизъюнкта выбирается один литерал.

Рассмотрим один пример применения правила резолюций при наличии переменных:

человек(f1(Х)); король(Х):-. (1)

король(Y):- почитает(f1(Y),Y). (2)

почитает(Z,артур):- человек(Y). (3)

Два первых дизъюнкта представляют стандартную форму формулы, которую можно выразить так: «если каждый человек почитает кого-то, то этот кто-то – король». Переменные переименованы для удобства объяснения. Третий дизъюнкт выражает высказывание о том, что каждый человек почитает Артура. Применяя правило резолюций к (2) и (3) (сопоставляя два соответствующих литерала), получаем:

король(артур):- человек(f1(артур)). (4)

( Yв (2) сопоставлен с артурв (3), a Zв (3) сопоставлен с fl(Y)в (2)). Теперь можно применить правило резолюций к (1) и (4), что дает:

король(артур); король(артур):-.

Это эквивалентно факту, гласящему, что Артур является королем.

В формальном определении метода резолюций процедура «сопоставления», на которую мы неформально ссылались, называется унификацией. Интуитивно, множество атомарных формул унифицируемо, если эти формулы могут быть сопоставлены друг с другом как структуры языка Пролог. В действительности, как это будет показано в одном из следующих разделов, процедура сопоставления, используемая в большинстве реализаций языка Пролог, не совпадает в точности с унификацией.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


У Клоксин читать все книги автора по порядку

У Клоксин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ отзывы


Отзывы читателей о книге ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ, автор: У Клоксин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x