Джонсон Харт - Системное программирование в среде Windows
- Название:Системное программирование в среде Windows
- Автор:
- Жанр:
- Издательство:Издательский дом Вильямс
- Год:2005
- Город:Москва • Санкт-Петербург • Киев
- ISBN:5-8459-0879-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джонсон Харт - Системное программирование в среде Windows краткое содержание
Эта книга посвящена вопросам разработки приложений с использованием интерфейса прикладного программирования операционных систем компании Microsoft (Windows 9х, Windows XP, Windows 2000 и Windows Server 2003). Основное внимание уделяется базовым системным службам, включая управление файловой системой, процессами и потоками, взаимодействие между процессами, сетевое программирование и синхронизацию. Рассматривается методика переноса приложений, написанных в среде Win32, в среду Win64. Подробно описываются все аспекты системы безопасности Windows и ее практического применения. Изобилие реальных примеров, доступных также и на Web-сайте книги, существенно упрощает усвоение материала.
Книга ориентирована на разработчиков и программистов, как высокой квалификации, так и начинающих, а также будет полезна для студентов соответствующих специальностей.
Системное программирование в среде Windows - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В главе 11 показано, как организовать взаимодействие между процессами и потоками, выполняющимися внутри этих процессов, используя именованные каналы (named pipes) и почтовые ящики (mailslots) Windows. В качестве основного примера выбрана клиент-серверная система, в которой для обслуживания запросов клиентов используется пул рабочих потоков. В главе 12 эта же система реализуется с привлечением гнезд Windows Sockets, что делает ее пригодной для использования стандартных протоколов. В обновленной клиент-серверной системе применяются безопасные библиотеки DLL с многопоточной поддержкой, а сервер использует внутрипроцессный сервер (in-process server) на основе DLL.
Дополнительная литература
Источником большей части информации и советов по программированию, приведенных в конце настоящей главы, послужила книга [6]. Из нее же было взято в переработанном виде и решение на базе объекта барьера, использованное в программах 10.1 и 10.2.
В статье Дугласа Шмидта (Douglas Schmidt) и Ирфана Пьярали (Irfan Pyarali) "Strategies for Implementing POSIX Condition Variables in Win32" ("Стратегии реализации переменных условий POSIX в Win32") (доступна по адресу http:// www.es.wustl.edu/~schmidt/win32-cv-1.html), обсуждается ограниченность событий Win32 (Windows) и эмуляция переменных условий, а также дан глубокий анализ и оценка нескольких подходов. Вместе с тем, этот материал был написан еще до появления функции SignalObjectAndWait, и поэтому большое внимание в статье уделяется тому, как избежать потери сигналов. Чтение этой статьи позволит вам по достоинству оценить возможности новых функций. В другой статье тех же авторов (http://www.cs.wustl.edu/~schmidt/win32-cv-2.html) рассматривается создание объектно-ориентированных оболочек вокруг объектов синхронизации Windows, позволяющих добиться независимости интерфейса синхронизации от платформы. Основанная на работе Шмидта и Пьярали реализация, в которой используются потоки Pthreads, доступна по адресу http://sources.redhat.com/pthreads-win32/.
Упражнения
10.1. Переработайте программу 10.1, исключив из нее функцию SignalObjectAndWait; для тестирования полученного результата воспользуйтесь Windows 9х.
10.2. Модифицируйте программу evenpc (программа 8.2), использовав модель переменных условий и обеспечив возможность существования нескольких потребителей. События какого типа потребуются в данном случае?
10.3. Измените логику работы программы 10.2 таким образом, чтобы объект события переходил в сигнальное состояние только один раз.
10.4. Замените мьютекс в объекте очереди, который используется в программе 10.2, объектом CS. Какое влияние это изменение оказывает на производительность и пропускную способность программы? Решение находится на Web-сайте книги, а соответствующие экспериментальные данные приведены в приложении В.
10.5. Для индикации состояний очереди, в которых она не пуста или не заполнена, в программе 10.4 применяется широковещательная модель CV. Будет ли в данном случае работать сигнальная модель CV? Не является ли она даже более предпочтительной в некоторых отношениях? Соответствующие экспериментальные данные приведены в приложении В.
10.6. Поэкспериментируйте с размерами очереди и величиной коэффициента блокирования "передатчик/приемник" в программе 10.5 для выяснения того, какое влияние оказывают эти факторы на загрузку ЦП, а также производительность и пропускную способность программы.
10.7. Видоизмените программы 10.3–10.5, обеспечив их соответствие принятым в Windows соглашениям о правилах образования имен, которых мы придерживаемся на протяжении всей книги.
10.8. Для программистов на C++. Приведенный в программах 10.3 и 10.4 код можно использовать для создания в C++ класса синхронизированной очереди; создайте этот класс и протестируйте его, модифицировав соответствующим образом программу 10.5. Какие из функций должны быть общедоступными, а какие — закрытыми?
10.9. Исследуйте, как изменятся показатели производительности программы 10.5 после замены мьютексов объектами CRITICAL_SECTIONS.
10.10. Улучшите программу 10.5, исключив необходимость прекращения выполнения потоков передатчика и приемника. Потоки должны самостоятельно завершать свое выполнение.
10.11. На web-сайте находится файл multisem.c, который реализует сложный семафор, имитирующий объекты Windows (они имеют имена и атрибуты безопасности, могут разделяться процессами, и для них предусмотрены две модели ожидания), а также файл тестовой программы TestMultiSem.c. Выполните сборку и тестирование этой программы. Как в ней используется модель переменных условий? Повышается ли производительность в результате использования объекта CRITICAL_SECTION? Что здесь выступает в роли инвариантов и предикатов переменных условий?
10.12. Проиллюстрируйте целесообразность рекомендаций, приведенных в конце настоящей главы, ссылаясь на ошибки, с которыми вам пришлось столкнуться, или ошибки, содержащиеся в версии программы с дефектами, представленной на Web-сайте.
10.13. Ознакомьтесь со статьей Шмидта и Пьярали "Strategies for Implementing POSIX Condition Variables in Win32" ("Стратегии реализации переменных условий POSIX в Win32") (см. раздел "Дополнительная литература"). Примените их методы анализа равноправия, корректности, сериализации и других программных факторов к моделям переменных условий (которые в указанной статье называются "идиомами" ("idioms")), фигурирующим в настоящей главе. Заметьте, что сами переменные условия в настоящей главе не эмулируются; вместо этого эмулируется их использование, тогда как Шмидт и Пьярали эмулируют переменные условий, используемые в произвольном контексте.
10.14. Находящиеся на web-сайте проекты batons и batonsmultipleevents демонстрируют альтернативные варианты решения задачи сериализации выполнения потоков. О предпосылках и предшествующих работах других авторов говорится в комментариях, включенных в код. Во втором решении с каждым потоком связывается уникальное событие, что позволяет отслеживать сигнальные состояния отдельных потоков. Для реализации выбран язык C++, что дало возможность воспользоваться средствами стандартной библиотеки шаблонов C++ (Standard Template Library, STL). Проанализируйте, что имеют общего и чем различаются между собой эти два решения и используйте второе из них в качестве средства ознакомления с библиотекой STL.
ГЛАВА 11
Взаимодействие между процессами
В главе 6 было показано, как создавать процессы и управлять ими, тогда как главы 7—10 были посвящены описанию методов управления потоками, которые выполняются внутри процессов, и объектов, обеспечивающих их синхронизацию. Вместе с тем, если не считать использования разделяемой памяти, мы до сих пор не рассмотрели ни одного из методов взаимодействия между процессами.
Ниже вы ознакомитесь с последовательным межпроцессным взаимодействием (Interprocess Communication, IPC) [30] Как показано в главе 10, в упражнении с семафором (упражнение 10.11), системные службы Windows предоставляют возможность организации взаимодействия между процессами также посредством отображаемых файлов. Дополнительные механизмы IPC включают файлы, сокеты, удаленные вызовы процедур, СОМ и отправку сообщений через почтовые ящики. Сокеты рассматриваются в главе 12.
, в котором используются объекты, подобные файлам. Двумя основными механизмами Windows, реализующими IPC, являются анонимные и именованные каналы, доступ к которым осуществляется с помощью уже известных вам функций ReadFile и WriteFile. Простые анонимные каналы являются символьными и работают в полудуплексном режиме. Эти свойства делают их удобными для перенаправления выходных данных одной программы на вход другой, как это обычно делается в UNIX. В первом примере демонстрируется, как реализовать эту возможность.
Интервал:
Закладка: