Е. Миркес - Учебное пособие по курсу «Нейроинформатика»
- Название:Учебное пособие по курсу «Нейроинформатика»
- Автор:
- Жанр:
- Издательство:КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
- Год:2002
- Город:Красноярск
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Е. Миркес - Учебное пособие по курсу «Нейроинформатика» краткое содержание
Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены учебный план по данному курсу, задания на лабораторные работы. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (Clab и Нейроучебник), и проект стандарта нейрокомпьютера, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.
Учебное пособие по курсу «Нейроинформатика» - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Pascal:
Function cnSetData(Param: PRealArray): Logic;
C:
Logic cnSetData(PRealArray Param)
Описание аргументов:
Param — адрес массива параметров.
Назначение — заменяет значения параметров контрастера на значения, переданные, в аргументе Param.
Описание исполнения.
1. Если Error <> 0, то выполнение запроса прекращается.
2. Если в момент получения запроса контрастер не загружен, то возникает ошибка 701 — неверное имя компонента, управление передается обработчику ошибок, а обработка запроса прекращается.
3. Параметры, значения которых хранятся в массиве, адрес которого передан в аргументе Param, передаются контрастеру.
Обработка ошибок
В табл. 40 приведен полный список ошибок, которые могут возникать при выполнении запросов компонентом контрастер, и действия стандартного обработчика ошибок.
Таблица 40. Ошибки компонента контрастер и действия стандартного обработчика ошибок.
№ | Название ошибки | Стандартная обработка |
---|---|---|
701 | Несовместимость сети и контрастера | Занесение номера в Error |
702 | Ошибка считывания контрастера | Занесение номера в Error |
703 | Ошибка сохранения контрастера | Занесение номера в Error |
704 | Некорректная работа с памятью | Занесение номера в Error |
705 | Ошибка исполнения контрастера | Занесение номера в Error |
706 | Неверное использование запроса на прерывание контрастирования | Занесение номера в Error |
ЛИТЕРАТУРА
1. Айвазян С.А., Бежаева З.И., Староверов О.В. Классификация многомерных наблюдений. — М.: Статистика, 1974.— 240 с.
2. Айзерман М.А., Браверман Э.М., Розоноэр Л.И. Метод потенциальных функций в теории обучения машин. М.: Наука, 1970.— 383 с.
3. Анастази А. Психологическое тестирование. М. Педагогика, 1982. Книга 1. 320 с.; Книга 2. 360 с.
4. Андерсон Т. Введение в многомерный статистический анализ. — М.: Физматгиз, 1963. 500 с.
5. Андерсон Т. Статистический анализ временных рядов. М.: Мир, 1976. 755 с.
6. Ануфриев А.Ф. Психодиагностика как деятельность и научная дисциплина // Вопросы психологии, 1994, № 2. С. 123–130.
7. Аркадьев А.Г., Браверман Э.М. Обучение машины классификации объектов. — М.: Наука, 1971.— 172 с.
8. Ахапкин Ю.К., Всеволдов Н.И., Барцев С.И. и др. Биотехника — новое направление компьютеризации. Серия "Теоретическая и прикладная биофизика", М: изд. ВИНИИТИ, 1990. 144 с.
9. Барцев С.И. Некоторые свойства адаптивных сетей. Препринт ИФ СО АН СССР, Красноярск, 1987, № 71Б, 17 с.
10. Барцев С.И., Гилев С.Е., Охонин В.А. Принцип двойственности в организации адаптивных систем обработки информации// Динамика химических и биологических систем, Новосибирск, Наука, 1989, с. 6–55.
11. Барцев С.И., Ланкин Ю.П. Моделирование аналоговых адаптивных сетей. Препринт Института биофизики СО РАН, Красноярск, 1993, № 203Б, 36 с.
12. Барцев С.И., Ланкин Ю.П. Сравнительные свойства адаптивных сетей с полярными и неполярными синапсами. Препринт Института биофизики СО РАН, Красноярск, 1993, № 196Б, 26 с.
13. Барцев С.И., Машихина Н.Ю., Суров С.В. Нейронные сети: подходы к аппаратной реализации. Препринт ИФ СО АН СССР, Красноярск, 1990, № 122Б, 14 с.
14. Барцев С.И., Охонин В.А. Адаптивные сети обработки информации. Препринт ИФ СО АН СССР, Красноярск, 1986, № 59Б, 20 с.
15. Барцев С.И., Охонин В.А. Адаптивные сети, функционирующие в непрерывном времени // Эволюционное моделирование и кинетика, Новосибирск, Наука, 1992, с. 24–30.
16. Беркинблит М.Б., Гельфанд И.М., Фельдман А.Г. Двигательные задачи и работа параллельных программ // Интеллектуальные процессы и их моделирование. Организация движения. — М.: Наука, 1991.— С. 37–54.
17. Боннер Р.Е. Некоторые методы классификации // Автоматический анализ изображений. — М.: Мир, 1969.— С. 205–234.
18. Борисов А.В., Гилев С.Е., Головенкин С.Е., Горбань А.Н., Догадин С.А., Коченов Д.А., Масленникова Е.В., Матюшин Г.В., Миркес Е.М., Ноздрачев К.Г., Россиев Д.А., Савченко А.А., Шульман В.А. Нейроимитатор «multineuron» и его применения в медицине. // Математическое обеспечение и архитектура ЭВМ: Материалы научно-технической конференции "Проблемы техники и технологий XXI века", 22–25 марта 1994 г. / КГТУ. Красноярск, 1994. С. 14–18.
19. Браверман Э.М., Мучник И.Б. Структурные методы обработки эмпирирических данных. — М.: Наука. Главная редакция физико-математической литературы. 1983. — 464 с.
20. Букатова И.Л. Эволюционное моделирование и его приложения. — М.: Наука, 1979.— 231 с.
21. Бурлачук Л.Ф., Коржова Е.Ю. К построению теории "измеренной индивидуальности" в психодиагностике // Вопросы психологии 1994, n5. С. 5–11.
22. Вавилов Е.И., Егоров Б.М., Ланцев В.С., Тоценко В.Г. Синтез схем на пороговых элементах. — М.: Сов. радио, 1970.
23. Вапник В.Н., Червоненкис А.Ф. Теория распознавания образов. — М.: Наука, 1974.
24. Веденов А.А. Моделирование элементов мышления. — М.: Наука, 1988.
25. Гаврилова Т.А., Червинская К.Р., Яшин А.М. Формирование поля знаний на примере психодиагностики // Изв. АН СССР. Техн. кибернетика, 1988, № 5.— С. 72–85.
26. Галушкин А.И. Синтез многослойных схем распознавания образов. — М.: Энергия, 1974.
27. Галушкин А.И., Фомин Ю.И. Нейронные сети как линейные последовательные машины. — М.: Изд-во МАИ, 1991.
28. Гельфанд И.М., Цетлин М.Л. О математическом моделировании механизмов центральной нервной системы // Модели структурно-функциональной организации некоторых биологических систем. — М.: Наука, 1966.— С. 9–26.
29. Гилев С.Е. "Сравнение методов обучения нейронных сетей", // Тезисы докладов III Всеросийского семинара "Нейроинформатика и ее приложения", Красноярск: Изд-во КГТУ, сс. 80–81.
30. Гилев С.Е. "Сравнение характеристических функций нейронов", // Тезисы докладов III Всеросийского семинара "Нейроинформатика и ее приложения", Красноярск: Изд-во КГТУ, 1995, с. 82
31. Гилев С.Е. Forth-propagation — метод вычисления градиентов оценки // Тезисы докладов II Всероссийского рабочего семинара "Нейроинформатика и ее приложения" (Красноярск, 7-10 октября 1994 г.) / Красноярск: Изд-во КГТУ, 1994, с. 36–37.
32. Гилев С.Е. Автореф. дисс. канд. физ. — мат. наук // Красноярск, КГТУ, 1997.
33. Гилев С.Е. Алгоритм сокращения нейронных сетей, основанный на разностной оценке вторых производных целевой функции // Нейроинформатика и ее приложения. Тезисы докладов 5 Всероссийского семинара, 3–5 октября 1997 г. / Под ред. А.Н.Горбаня. Красноярск: изд. КГТУ, 1997. С. 45–46.
34. Гилев С.Е. Гибрид сети двойственности и линейной сети// Нейроинформатика и нейрокомпьютеры/ тезисы докладов рабочего семинара 8-11 октября 1993 г., Красноярск/ Институт биофизики СО РАН, 1993. С. 25.
35. Гилев С.Е. Метод получения градиентов оценки по подстроечным параметрам без использования back propagation // Нейроинформатика и ее приложения: Материалы III Всероссийского семинара, 6–8 октября 1995 г. Ч. 1/Под ред. А.Н.Горбаня; Красноярск: Изд-во КГТУ, 1995. С. 91–100.
Читать дальшеИнтервал:
Закладка: