Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Тут можно читать онлайн Е. Миркес - Учебное пособие по курсу «Нейроинформатика» - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Учебное пособие по курсу «Нейроинформатика»
  • Автор:
  • Жанр:
  • Издательство:
    КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
  • Год:
    2002
  • Город:
    Красноярск
  • ISBN:
    нет данных
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Е. Миркес - Учебное пособие по курсу «Нейроинформатика» краткое содержание

Учебное пособие по курсу «Нейроинформатика» - описание и краткое содержание, автор Е. Миркес, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.

Несколько слов о структуре пособия. Далее во введении приведены учебный план по данному курсу, задания на лабораторные работы. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (Clab и Нейроучебник), и проект стандарта нейрокомпьютера, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.

Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» - читать онлайн бесплатно полную версию (весь текст целиком)

Учебное пособие по курсу «Нейроинформатика» - читать книгу онлайн бесплатно, автор Е. Миркес
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Приведенный выше способ уменьшения критерия Липшица не единственный. В следующем разделе рассмотрен ряд способов предобработки, решающих ту же задачу.

Другие способы предобработки числовых признаков

В данном разделе будет рассмотрено три вида предобработки числовых признаков — модулярный, позиционный и функциональный. Основная идея этих методов предобработки состоит в том, чтобы сделать значимыми малые отличия больших величин. Действительно, пусть для ответа существенно изменение величины признака на единицу при значении признака порядка миллиона. Очевидно, что простейшая предобработка (1) сделает отличие в единицу неразличимым для нейронной сети при абсолютных значениях порядка миллиона.

Все эти виды предобработки обладают одним общим свойством — за счет кодирования входного признака несколькими сигналами они уменьшают сложность задачи (критерий Липшица).

Модулярная предобработка

Зададимся некоторым набором положительных чисел y 1, …, y k . Определим сравнение по модулю для действительных чисел следующим образом:

x mod y = x-y·Int ( x/y ), (15)

где Int ( x ) — функция, вычисляющая целую часть величины x путем отбрасывания дробной части. Очевидно, что величина x mod y лежит в интервале (- y, y ).

Кодирование входного признака x при модулярной предобработке вектором Z производится по следующей формуле:

(16)

Таблица 8. Пример сигналов при модулярном вводе

x x mod 3 x mod 5 x mod 7 x mod 11
5 2 0 5 5
10 1 0 3 10
15 0 0 1 3

Однако модулярная предобработка обладает одним отрицательным свойством — во всех случаях, когда y iy r 1, при целом r , разрушается отношение предшествования чисел. В табл. 8 приведен пример векторов. Поэтому, модульная предобработка пригодна при предобработке тех признаков, у которых важна не абсолютная величина, а взаимоотношение этой величины с величинами y 1, …, y k .

Примером такого признака может служить угол между векторами, если в качестве величин y выбрать y i =π/ i .

Функциональная предобработка

Функциональная предобработка преследует единственную цель — снижение константы Липшица задачи. В разделе «Предобработка, облегчающая обучение», был приведен пример такой предобработки. Рассмотрим общий случай функциональной предобработки, отображающих входной признак x в k- мерный вектор z . Зададимся набором из k чисел, удовлетворяющих следующим условиям: x min< y 1<���…< y k -1< y k < x max.

Таблица 9. Пример функциональной предобработки числового признака x ∈[0,5], при условии, что сигналы нейронов принадлежат интервалу [-1,1]. В сигмоидной предобработке использована φ( x )= x /(1+| x |), а в шапочной — φ( x )=2/(1+ x ²)-1. Были выбраны четыре точки y i=i .

x z 1( x ) z 2( x ) z 3( x ) z 4( x )
Линейная предобработка
1.5 0.5 -0.5 -1 -1
3.5 1 1 0.5 -0.5
Сигмоидная предобработка
1.5 0.3333 -0.3333 -0.6 -0.7142
3.5 0.7142 0.6 0.3333 -0.3333
Шапочная предобработка
1.5 0.6 0.6 -0.3846 -0.7241
3.5 -0.7241 -0.3846 0.6 0.6

Пусть φ — функция, определенная на интервале [ x min- y k , x max- y 1], а φ min, φ max— минимальное и максимальное значения функции φ на этом интервале. Тогда i- я координата вектора z вычисляется по следующей формуле:

(17)

Линейная предобработка. В линейной предобработке используется кусочно линейная функция:

(18)

Графики функций z i ( x ) представлены на рис. 2а. Видно, что с увеличением значения признака x ни одна функция не убывает, а их сумма возрастает. В табл. 9 представлены значения этих функций для двух точек — x 1=1.5 и x 2=3.5.

Сигмоидная предобработка. В сигмоидной предобработке может использоваться любая сигмоидная функция. Если в качестве сигмоидной функции использовать функцию S 2, приведенную в разделе «Нейрон»этой главы, то формула (17) примет следующий вид:

Графики функций z i ( x ) представлены на рис. 2б. Видно, что с увеличением значения признака x ни одна функция не убывает, а их сумма возрастает. В табл. 9 представлены значения этих функций для двух точек x 1=1.5 и x 2=3.5.

Шапочная предобработка. Для шапочной предобработки используются любые функции, имеющие график в виде «шапочки». Например, функция φ( x )=1/(1+ x ²).

Графики функций z i ( x ) представлены на рис. 2 в. Видно, что с увеличением значения признака x ни одна из функций z i ( x ) , ни их сумма не ведут себя монотонно. В табл. 9 представлены значения этих функций для двух точек x 1=1.5 и x 2=3.5.

Позиционная предобработка

Основная идея позиционной предобработки совпадает с принципом построения позиционных систем счисления. Зададимся положительной величиной y такой, что y k ≥( x min- x max). Сдвинем признак x так, чтобы он принимал только неотрицательные значения. В качестве сигналов сети будем использовать результат простейшей предобработки y- ичных цифр представления сдвинутого признака x . Формулы вычисления цифр приведены ниже:

(19)

где операция сравнения по модулю действительного числа определена в (15). Входные сигналы сети получаются из компонентов вектора z путем простейшей предобработки.

Составной предобработчик

Поскольку на вход нейронной сети обычно подается несколько входных сигналов, каждый из которых обрабатывается своим предобработчиком, то предобработчик должен быть составным. Представим предобработчик в виде совокупности независимых частных предобработчиков. Каждый частный предобработчик обрабатывает одно или несколько тесно связанных входных данных. Как уже отмечалось ранее, предобработчик может иметь один из четырех типов, приведенных в табл. 10. На входе предобработчик получает вектор входных данных (возможно, состоящий из одного элемента), а на выходе выдает вектор входных сигналов сети (так же возможно состоящий из одного элемента).

Таблица 10. Типы предобработчиков

Тип Описание
Number Предобрабатывает числовые входные данные
Unordered Предобрабатывает неупорядоченные качественные признаки
Ordered Предобрабатывает упорядоченные качественные признаки
Binary Обрабатывает бинарные признаки

Необходимость передачи предобработчику вектора входных данных и получения от него вектора входных сигналов связана с тем, что существуют предобработчики получающие несколько входных данных и выдающие несколько входных сигналов. Примером такого предобработчика может служить предобработчик, переводящий набор координат планеты из сферической в декартову.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Е. Миркес читать все книги автора по порядку

Е. Миркес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Учебное пособие по курсу «Нейроинформатика» отзывы


Отзывы читателей о книге Учебное пособие по курсу «Нейроинформатика», автор: Е. Миркес. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x