Е. Миркес - Учебное пособие по курсу «Нейроинформатика»
- Название:Учебное пособие по курсу «Нейроинформатика»
- Автор:
- Жанр:
- Издательство:КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
- Год:2002
- Город:Красноярск
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Е. Миркес - Учебное пособие по курсу «Нейроинформатика» краткое содержание
Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены учебный план по данному курсу, задания на лабораторные работы. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (Clab и Нейроучебник), и проект стандарта нейрокомпьютера, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.
Учебное пособие по курсу «Нейроинформатика» - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Обозначим входной сигнал через x , параметр через α , а вычисляемую этим преобразователем функцию через σ( α,x ) (рис. 11а). При обратном функционировании на выход сигмоидного элемента подается сигнал ∂ F /∂σ( α,x ).
На входе сигнала должен быть получен сигнал обратного функционирования, равный , а на входе параметра поправка, равная (рис. 11б).
Произвольный непрерывный нелинейный преобразователь имеет несколько входных сигналов, а реализуемая им функция зависит от нескольких параметров. Выходной сигнал такого элемента вычисляется как некоторая функция φ( x,α), где x— вектор входных сигналов, а a — вектор параметров. При обратном функционировании на выходную связь элемента подается сигнал обратного функционирования, равный ∂F/∂φ .
На входы сигналов выдаются сигналы обратного функционирования, равные , а на входах параметров вычисляются поправки, равные
Пороговый преобразовательПороговый преобразователь, реализующий функцию определения знака (рис. 12а), не является элементом с непрерывной функцией, и, следовательно, его обратное функционирование не может быть определено из требования вычисления градиента. Однако, при обучении сетей с пороговыми преобразователями полезно иметь возможность вычислять поправки к параметрам. Так как для порогового элемента нельзя определить однозначное поведение при обратном функционировании, предлагается доопределить его, исходя из соображений полезности при конструировании обучаемых сетей. Основным методом обучения сетей с пороговыми элементами является правило Хебба (подробно рассмотрено во второй части главы). Оно состоит из двух процедур, состоящих в изменении «весов связей между одновременно активными нейронами». Для этого правила пороговый элемент при обратном функционировании должен выдавать сигнал обратного функционирования, совпадающий с выданным им сигналом прямого функционирования (рис. 12б). Такой пороговый элемент будем называть зеркальным. При обучении сетей Хопфилда[312], подробно рассмотренном во второй части главы, необходимо использовать «прозрачные» пороговые элементы, которые при обратном функционировании пропускают сигнал без изменения (рис. 12в).
Правила остановки работы сети
При использовании сетей прямого распространения (сетей без циклов) вопроса об остановке сети не возникает. Действительно, сигналы поступают на элементы первого (входного) слоя и, проходя по связям, доходят до элементов последнего слоя. После снятия сигналов с последнего слоя все элементы сети оказываются «обесточенными», то есть ни по одной связи сети не проходит ни одного ненулевого сигнала. Сложнее обстоит дело при использовании сетей с циклами. В случае общего положения, после подачи сигналов на входные элементы сети по связям между элементами, входящими в цикл, ненулевые сигналы будут циркулировать сколь угодно долго.
Существует два основных правила остановки работы сети с циклами. Первое правило состоит в остановке работы сети после указанного числа срабатываний каждого элемента. Циклы с таким правилом остановки будем называть ограниченными.
Второе правило остановки работы сети — сеть прекращает работу после установления равновесного распределения сигналов в цикле. Такие сети будем называть равновесными. Примером равновесной сети может служить сеть Хопфилда [312] (см. разд. «Сети Хопфилда»).
Архитектуры сетей
Как уже отмечалось ранее, при конструировании сетей из элементов можно построить сеть любой архитектуры. Однако и при произвольном конструировании можно выделить наиболее общие признаки, существенно отличающие одну сеть от другой. Очевидно, что замена простого сумматора на адаптивный или даже на квадратичный не приведут к существенному изменению структуры сети, хотя число обучаемых параметров увеличится. Однако, введение в сеть цикла сильно изменяет как структуру сети, так и ее поведение. Таким образом можно все сети разбить на два сильно отличающихся класса: ациклическиесети и сети с циклами.Среди сетей с циклами существует еще одно разделение, сильно влияющее на способ функционирования сети: равновесные сети с цикламии сети с ограниченными циклами.
Большинство используемых сетей не позволяют определить, как повлияет изменение какого-либо внутреннего параметра сети на выходной сигнал. На рис. 13 приведен пример сети, в которой увеличение параметра α приводит к неоднозначному влиянию на сигнал x 2: при отрицательных x 1произойдет уменьшение x 2, а при положительных x 1— увеличение. Таким образом, выходной сигнал такой сети немонотонно зависит от параметра α. Для получения монотонной зависимости выходных сигналов сети от параметров внутренних слоев (то есть всех слоев кроме входного) необходимо использовать специальную монотонную архитектуру нейронной сети. Принципиальная схема сетей монотонной архитектуры приведена на рис. 14.
Основная идея построения монотонных сетей состоит в разделении каждого слоя сети на два — возбуждающий и тормозящий. При этом все связи в сети устроены так, что элементы возбуждающей части слоя возбуждают элементы возбуждающей части следующего слоя и тормозят тормозящие элементы следующего слоя. Аналогично, тормозящие элементы возбуждают тормозящие элементы и тормозят возбуждающие элементы следующего слоя. Названия «тормозящий» и «возбуждающий» относятся к влиянию элементов обеих частей на выходные элементы.
Отметим, что для сетей с сигмоидными элементами требование монотонности означает, что веса всех связей должны быть неотрицательны. Для сетей с Паде элементами требование не отрицательности весов связей является необходимым условием бессбойной работы. Требование монотонности для сетей с Паде элементами приводит к изменению архитектуры сети, не накладывая никаких новых ограничений на параметры сети. На рис. 15 приведены пример немонотонной сети, а на рис. 16 монотонной сети с Паде элементами.
Особо отметим архитектуру еще одного класса сетей — сетей без весов связей. Эти сети, в противовес коннекционистским, не имеют обучаемых параметров связей. Любую сеть можно превратить в сеть без весов связей заменой всех синапсов на умножители. Легко заметить, что получится такая же сеть, только вместо весов связей будут использоваться сигналы. Таким образом в сетях без весов связей выходные сигналы одного слоя могут служить для следующего слоя как входными сигналами, так и весами связей. Заметим, что вся память таких сетей содержится в значениях параметров нелинейных преобразователей. Из разделов «Синапс»и «Умножитель»следует, что сети без весов связей способны вычислять градиент функции оценки и затрачивают на это ровно тоже время, что и аналогичная сеть с весами связей.
Читать дальшеИнтервал:
Закладка: