Е. Миркес - Учебное пособие по курсу «Нейроинформатика»
- Название:Учебное пособие по курсу «Нейроинформатика»
- Автор:
- Жанр:
- Издательство:КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
- Год:2002
- Город:Красноярск
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Е. Миркес - Учебное пособие по курсу «Нейроинформатика» краткое содержание
Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены учебный план по данному курсу, задания на лабораторные работы. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (Clab и Нейроучебник), и проект стандарта нейрокомпьютера, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.
Учебное пособие по курсу «Нейроинформатика» - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Таким образом, каждый пример может иметь два веса: вес примера и достоверность примера. Кроме того, при решении задач классификации каждый класс может обладать собственным весом. Окончательно функцию оценки по обучающему множеству и ее градиент можно записать в следующем виде:
где w i — вес примера, δ i — его достоверность.
Глобальные и локальные оценки
В предыдущих разделах был рассмотрен ряд оценок. Эти оценки обладают одним общим свойством — для вычисления оценки по примеру, предъявленному сети, достаточно знать выходной вектор, выданный сетью при решении этого примера, и правильный ответ. Такие оценки будем называть локальными. Приведем точное определение.
Определение. Локальной называется любая оценка, являющаяся линейной комбинацией произвольных непрерывно дифференцируемых функций, каждая из которых зависит от оценки только одного примера.
Использование локальных оценок позволяет обучать сеть решению как отдельно взятого примера, так и всего обучающего множества в целом. Однако существуют задачи, для которых невозможно построить локальную оценку. Более того, для некоторых задач нельзя построить даже обучающее множество. Использование нелокальных оценок возможно даже при решении задач классификации.
Приведем два примера нелокальных оценки.
Кинетическая оценка для задачи классификации. Пусть в обучающее множество входят примеры k классов. Требуется обучить сеть так, чтобы в пространстве выходных сигналов множества примеров разных классов были попарно линейно разделимы.
Пусть сеть выдает N выходных сигналов. Для решения задачи достаточно, чтобы в ходе обучения все точки в пространстве выходных сигналов, соответствующие примерам одного класса, собирались вокруг одной точки — центра концентрации класса, и чтобы центры концентрации разных классов были как можно дальше друг от друга. В качестве центра концентрации можно выбрать барицентр множества точек, соответствующих примерам данного класса.
Таким образом, функция оценки должна состоять из двух компонентов: первая реализует притяжение между примерами одного класса и барицентром этого класса, а вторая отвечает за отталкивание барицентров разных классов. Обозначим точку в пространстве выходных сигналов, соответствующую m- му примеру, через α m , множество примеров i- го класса через I i , барицентр точек, соответствующих примерам этого класса, через B i ( ), число примеров в i- ом классе через | B i |, а расстояние между точками a и b через . Используя эти обозначения, можно записать притягивающий компонент функции оценки для всех примеров i- го класса в виде:
Функция оценки H P i обеспечивает сильное притяжение для примеров, находящихся далеко от барицентра. Притяжение ослабевает с приближением к барицентру. Компонент функции оценки, отвечающий за отталкивание барицентров разных классов, должен обеспечивать сильное отталкивание близких барицентров и ослабевать с удалением барицентров друг от друга. Такими свойствами обладает гравитационное отталкивание. Используя гравитационное отталкивание можно записать второй компонент функции оценки в виде:
Таким образом, оценку, обеспечивающую сближение точек, соответствующих примерам одного класса, и отталкивание барицентров, можно записать в виде:
Вычислим производную оценки по j- му выходному сигналу, полученному при решении i -го примера. Пусть i- ый пример принадлежит l- му классу. Тогда производная имеет вид:
Эту оценку будем называть кинетической. Существует одно основное отличие этой оценки от всех других, ранее рассмотренных, оценок для решения задач классификации. При использовании традиционных подходов, сначала выбирают интерпретатор ответа, затем строят по выбранному интерпретатору функцию оценки, и только затем приступают к обучению сети. Для кинетической оценки такой подход не применим. Действительно, до того как будет закончено обучение сети невозможно построить интерпретатор. Кроме того, использование кинетической оценки, делает необходимым обучение сети решению всех примеров обучающего множества одновременно. Это связанно с невозможностью вычислить оценку одного примера. Кинетическая оценка, очевидно, не является локальной: для вычисления производных оценки по выходным сигналам примера необходимо знать барицентры всех классов, для вычисления которых, в свою очередь, необходимо знать выходные сигналы, получаемые при решении всех примеров обучающего множества.
Интерпретатор для кинетической оценки строится следующим образом. Для построения разделителя i- го и j- го классов строим плоскость, перпендикулярную к вектору ( B i-B j ). Уравнение этой плоскости можно записать в виде
Для определения константы D находим среди точек i- го класса ближайшую к барицентру j- го класса. Подставляя координаты этой точки в уравнение гиперплоскости, получаем уравнение на D . Решив это уравнение, находим величину D 1. Используя ближайшую к барицентру i- го класса точку j- го класса, находим величину D 2. Искомая константа D находится как среднее арифметическое между D 1и D 2. Для отнесения произвольного вектора к i- му или j- му классу достаточно подставить его значения в левую часть уравнения разделяющей гиперплоскости. Если значение левой части уравнения получается больше нуля, то вектор относится к j- му классу, в противном случае — к i- му.
Интерпретатор работает следующим образом: если для i- го класса все разделители этого класса с остальными классами выдали ответ i- ый класс, то окончательным ответом является i- ый класс. Если такого класса не нашлось, то ответ «не знаю». Ситуация, когда для двух различных классов все разделители подтвердили принадлежность к этому классу, невозможна, так как разделитель этих двух классов должен был отдать предпочтение одному из них.
Рассмотренный пример решения задачи с использованием нелокальной оценки позволяет выделить основные черты обучения с нелокальной оценкой:
1. Невозможность оценить решение одного примера.
2. Невозможность оценить правильность решения примера до окончания обучения.
3. Невозможность построения интерпретатора ответа до окончания обучения.
Этот пример является отчасти надуманным, поскольку его можно решить с использованием более простых локальных оценок. Ниже приведен пример задачи, которую невозможно решить с использованием локальных оценок.
Генератор случайных чисел. Необходимо обучить сеть генерировать последовательность случайных чисел из диапазона [0,1]с заданными k первыми моментами. Напомним, что для выборки роль первого момента играет среднее значение, второго — средний квадрат, третьего — средний куб и так далее. Есть два пути решения этой задачи. Первый — используя стандартный генератор случайных чисел подготовить задачник и обучить по нему сеть. Этот путь плох тем, что такой генератор будет просто воспроизводить последовательность чисел, записанную в задачнике. Для получения такого результата можно просто хранить задачник.
Читать дальшеИнтервал:
Закладка: