Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Тут можно читать онлайн Е. Миркес - Учебное пособие по курсу «Нейроинформатика» - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Учебное пособие по курсу «Нейроинформатика»
  • Автор:
  • Жанр:
  • Издательство:
    КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
  • Год:
    2002
  • Город:
    Красноярск
  • ISBN:
    нет данных
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Е. Миркес - Учебное пособие по курсу «Нейроинформатика» краткое содержание

Учебное пособие по курсу «Нейроинформатика» - описание и краткое содержание, автор Е. Миркес, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.

Несколько слов о структуре пособия. Далее во введении приведены учебный план по данному курсу, задания на лабораторные работы. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (Clab и Нейроучебник), и проект стандарта нейрокомпьютера, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.

Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» - читать онлайн бесплатно полную версию (весь текст целиком)

Учебное пособие по курсу «Нейроинформатика» - читать книгу онлайн бесплатно, автор Е. Миркес
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Чистый образ

Все программы, кроме программы Hopfield.

Это «пустая» предобработка — никакой предобработки не производится.

Сдвиговый автокоррелятор

Все программы, кроме программы Hopfield.

Основная идея этого метода предобработки — сделать вектор входных сигналов нейронной сетиинвариантным к сдвигу. Другими словами, два вектора, соответствующие одному и тому же образу, расположенному в разных местах шаблона 10*10, после предобработки этим способом должны совпадать! Рассмотрим подробно метод вычисления автокоррелятора. Пусть дано изображение X. x[i,j] — точка изображения в i-ом ряду и j-ом столбце. Будем считать x[i,j]=0, если хотя бы один индекс (i или j) находится вне пределов интервала (1,10). Элемент автокоррелятора A — a[l,k] вычисляется по формуле:

a[l,k] = Сумма по i от 1 до 10 (Сумма по j от 1 до 10 < x[i,j]*x[i+l,j+k] >)

Другими словами, a[l,k] — число точек совпадающих при наложении изображения X на это же, но сдвинутое на вектор (l,k) изображение. Легко заметить, что ненулевыми могут быть только элементы автокоррелятора A с индексами –9<=l,k<=9. Однако a[l,k]=a[-l, –k] Таким образом можно рассматривать только часть коррелятора с индексами –9<=i<=9 и 0<=j<=9. Если Вы задаете размер автокоррелятора m*n, то входными сигналами для сети будут служить элементы a[i,j] при — (n-1)<=i<=(n-1), 0<=j<=m-1.

Автокоррелятор сдвиг+отражение

Все программы, кроме программы Hopfield.

Этот метод предобработки в качестве исходных данных использует сдвиговый автокоррелятор.Идея вычисления автокоррелятора сдиг+отражение (S) очень проста: Сложим значения, соответствующие симметричным точкам, и будем считать их новыми значениями. s[k,l]=a[k,l]+a[k, –l]. Очевидно, что автокоррелятор S инвариантен относительно сдвига и отражения. Кроме того, можно ограничиться только элементами с неотрицательными индексами. Если Вы задали размеры автокоррелятора m*n, то входными сигналами сети будут s[l,k] при 0<=l<=n-1, 0<=k<=m.

Автокоррелятор сдвиг+вращение

Все программы, кроме программы Hopfield.

Этот метод предобработки в качестве исходных данных использует сдвиговый автокоррелятор.Идея вычисления автокоррелятора очень проста: поворачиваем автокоррелятор A на 90 градусов относительно элемента a[0,0] и получаем элемент автокоррелятора R умножением соответствующих элементов — r[p,q]=a[p,q]*a[q, –p]. Очевидно, что автокоррелятор R инвариантен относительно сдвига и поворота на 90 градусов. Кроме того, можно ограничиться только элементами с неотрицательными индексами. Если вы задали размеры автокоррелятора m*n, то входными сигналами сети будут s[l,k] при 0<=l<=n-1, 0<=k<=m.

Автокоррелятор сдвиг+вращение+отражение

Все программы, кроме программы Hopfield.

Этот метод предобработки в качестве исходных данных использует автокоррелятор сдвиг+вращение.Идея вычисления автокоррелятора сдвиг+вращение+отражение (C) очень проста: Сложим значения, соответствующие симметричным точкам, и будем считать их новыми значениями. c[k,l]=r[k,l]+r[k, –l]. Очевидно, что автокоррелятор C инвариантен относительно сдвига, вращения и отражения. Кроме того, можно ограничиться только элементами с неотрицательными индексами. Если вы задали размеры автокоррелятора m*n, то входными сигналами сети будут с[l,k] при 0<=l<=n-1, 0<=k<=m.

Параметры нейронной сети

Все программы, кроме программы Hopfield.

Этот пункт меню позволяет Вам изменять структуру нейронной сети.Вы можете изменить такие важнейшие параметры сети, как

Число нейронов в сети

Число срабатываний сети

Характеристика нейронов

Число нейронов в сети

Все программы, кроме программы Hopfield.

Этот пункт меню позволяет Вам изменять число нейронов в сети от 5 до 10. Подробно структура сети и нейрона описана в разделах Нейронная сетьи Нейрон.

Число срабатываний сети

Все программы, кроме программы Hopfield.

Наиболее широкую известность получили нейронные сети слоистой архитектуры. В таких сетях за время решения примера сигнал только один раз попадает на нейроны каждого слоя. Имитируемая данной программой сеть является полносвязной сетью — каждый нейрон передает сигнал всем другим (в том числе и себе). Однако любую полносвязную сеть можно представить в виде слоистой сети с идентичными слоями. В рамках такого представления число срабатываний сети равно числу слоев нейронной сети, следующих за входным слоем. Число срабатываний сети может изменяться от 1 до 5.

Характеристика нейронов

Программа Sigmoid

В разделе Нейронописана структура работы нейрона. В функциональном преобразователе нейрона, работающем по формуле F = R / (C+|R|), присутствует величина С, называемая характеристикой нейрона. Этот пункт меню позволяет Вам изменять эту величину от 0.001 до 5.

ПрограммаSinus не имеет параметра Характеристика нейрона

ПрограммаPade

В разделе Нейронописана структура работы нейрона. В функциональном преобразователе нейрона, работающем по формуле F = N / (C+D) присутствует величина С, называемая характеристикой нейрона. Этот пункт меню позволяет Вам изменять эту величину в пределах от 0.001 до 5.

Параметры контрастирования

Программа Hopfield.

Если Вы посмотрите на синаптическую карту(воспользуйтесь клавишей для перехода в режим Редактирования карты),то заметите, что большая часть синаптических весов мала и одинакова по величине. Процедура контрастирования (вызывается нажатием клавиш ) позволяет исключить часть связей из функционирования. Вам предлагается два способа исключения «лишних» связей:

Меньше х.ххх все синаптические веса, меньшие числа х.ххх по абсолютной величине устанавливаются равными 0. Число х.ххх должно лежать в интервале от 0 до 1.
Дальше хх все синаптические веса связей с нейронами, удаленными от данного более чем на хх устанавливаются равными 0. По этому алгоритму обрабатываются последовательно все нейроны. Расстояние определяется как сумма модулей разности индексов двух нейронов (сумма расстояния по горизонтали и по вертикали). Например, расстояние между вторым нейроном пятой строки и шестым нейроном первой строки равно |2–6|+|5–1|=8. Задаваемый Вами радиус контрастирования хх должен принадлежать интервалу от 1 до 18.

Все программы, кроме программы Hopfield.

Это подменю позволяет Вам определить понятие «лишних» и "медленно обучаемых" связей, а также связей подлежащих возвращению в обучаемое состояние, путем задания следующих параметров процедуры Контрастирования:

Норма для исключения

Норма для включения

Количество контрастируемых связей

Количество замораживаемых связей

Количество размораживаемых связей

Число циклов накопления критерия

Набор выделенных значений (1/2^n)

Норма для исключения

Все программы, кроме программы Hopfield.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Е. Миркес читать все книги автора по порядку

Е. Миркес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Учебное пособие по курсу «Нейроинформатика» отзывы


Отзывы читателей о книге Учебное пособие по курсу «Нейроинформатика», автор: Е. Миркес. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x