Иво Салмре - Программирование мобильных устройств на платформе .NET Compact Framework
- Название:Программирование мобильных устройств на платформе .NET Compact Framework
- Автор:
- Жанр:
- Издательство:Издательский дом Вильямс
- Год:2006
- Город:Москва • Санкт-Петербург • Киев
- ISBN:5-8459-0989-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иво Салмре - Программирование мобильных устройств на платформе .NET Compact Framework краткое содержание
Книга известного профессионала в области компьютерных технологий посвящена разработке приложений для широкого спектра мобильных устройств с использованием популярной и постоянно развивающейся платформы .NET Compact Framework. Уникальность этой книги состоит в том, что в ней гармонично переплетены теоретические сведения обо всем цикле разработки программного обеспечения с практическими примерами применения на языках С# и Visual Basic. Подробно рассматриваются концепции, лежащие в основе самой платформы .NET Compact Framework, а также вопросы, связанные с созданием эффективного пользовательского интерфейса, управлением памятью, производительностью и надежностью. Немалое внимание уделяется практическим аспектам разработки приложений для мобильных устройств, среди которых выбор модели представления и доступа к данным, внедрение коммуникационной модели, реализация модели поведения с помощью конечных автоматов и использование XML.
Книга рассчитана на разработчиков разной квалификации, а также может быть полезна для студентов и преподавателей соответствующих специальностей.
Программирование мобильных устройств на платформе .NET Compact Framework - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Если в приложении имеются длительно выполняющиеся алгоритмы, завершение которых необходимо для получения аналитического ответа, то фоновый поток является великолепным кандидатом для выполнения этой работы. Так, в процессе алгоритмического выбора следующего хода в шахматной игре значительное время тратится на сравнение различных вариантов ходов; фоновый поток отлично справится с такой работой. Если вы на 90 процентов уверены в том, что пользователь каждый раз будет запрашивать определенную фотографию или порцию данных, которые загружаются несколько секунд или требуют сетевого доступа, то заблаговременное выполнение этой работы фоновым потоком будет производить на пользователя ошеломляющий эффект. Существует масса других поводов к тому, чтобы использовать в приложении фоновые потоки для улучшения ответной реакции пользовательского интерфейса в конкретных случаях. Фоновые потоки могут использоваться либо для запуска долговременных алгоритмов в ответ на запрос пользователя, либо для предварительного извлечения данных или выполнения вычислений, исходя из прогнозируемых потребностей пользователя.
Многозадачность и многопоточность в современных операционных системах
Существующие на сегодняшний день современные многозадачные операционные системы позволяют использовать микропроцессор как разделяемый ресурс. Микропроцессорное время распределяется между различными задачами таким образом, что с точки зрения задачи она является единственным владельцем этого ресурса. Это называется многозадачностью, а на выполняемые задачи ссылаются как на процессы. В каждый момент времени на вашем мобильном устройстве выполняются, вероятно, одновременно несколько задач. Скорее всего, количество этих задач больше, чем вы могли бы думать. Некоторые из них обслуживают низкоуровневые потребности, так что "приложениями" вы их даже и не назовете, тогда как другие представляют собой хорошо знакомые вам программы. Время от времени операционная прерывает выполнение задачи в некоторой точке и передает управление другому ожидающему процессу или потоку. Все это хорошо работает, поскольку большую часть времени приложения ничем особенным не заняты; обычно они просто ожидают какого-либо ввода, который необходимо будет обработать. Если же каждый из процессов приложения использует все отведенное для него процессорное время для вычисления значения числа ??!pi□ с бесконечной точностью, то общая производительность значительно страдает. Многозадачность оправдывается тогда, когда значительную часть времени возможности микропроцессора используется в недостаточной степени.
Вопрос о справедливом распределении процессорного времени между различными процессами и потоками — это особая тема, на обсуждение которой потребовалась бы целая книга. Достаточно сказать, что процессорное время распределяется между различными задачами, конкурирующими между собой за обладание этим ресурсом, на основании неких разумных принципов.
Передача управления от одного процесса к другому сопряжена с так называемым переключением контекста. Поскольку каждому процессу приложения кажется, будто он является единственным владельцем микропроцессора, при передаче управления от одного процесса другому должен осуществляться свопинг всех используемых данных. Свопинг охватывает регистры микропроцессора, программный счетчик и указатели виртуальной памяти, а если используется конвейер команд, помещаемых в очередь, или же кэш-память, связанная с микропроцессором, то обработке подлежат и эти данные. Переключение контекста обходится недешево. Чем больше процессов выполняется на устройстве или чем меньше квант времени, выделяемый каждому процессу для выполнения, тем больше доля времени, которое тратится на переключение от одного процесса к другому.
Поскольку обработка операционной системой контекстных переключений между задачами является дорогостоящей, большинство современных систем поддерживают многопоточность, которая представляет собой упрощенную форму многозадачности. Многопоточность обеспечивает поддержку нескольких потоков выполнения внутри одного процесса. Переключение контекста выполнения между различными потоками обходится дешевле, чем переключение контекстов процессов. Однако переключение контекстов потоков также не дается бесплатно. Определенные накладные расходы требуются для изменения исполнительного адреса, свопинга регистровых значений, а также других вспомогательных операций, обеспечивающих гладкое протекание вычислений.
Использование нескольких потоков выполнения в рамках одного и того же пространства памяти приложения может приводить к значительному усложнению кода приложения, обусловленному недетерминированностью времени выполнения вычислений. Попытки двух потоков получить доступ к одним и тем же областям памяти примерно в одно и то же время могут стать причиной возникновения сложных и не до конца определенных ситуаций. Это справедливо как в случае собственного кода С/С++, так и в случае управляемого кода. Для решения проблем подобного рода предназначены блокировки, мьютексы, семафоры и критические разделы; объекты последней разновидности позволяют создавать разделы кода, не являющиеся реентерабельными. В целом, многопоточность напоминает многоярусную автостраду, где есть участки, на которых все движение сливается в одну трассу. И вновь заметим, что подробному рассмотрению всех сложностей и подводных камней параллельного выполнения кода можно было бы посвятить целую книгу.
В конечном счете, все различные процессы и потоки конкурируют между собой за право захватить возможность выполнения на единственном процессоре (или на пуле процессоров, если речь идет о многопроцессорных системах). Каждый процесс может иметь, по крайней мере, один поток, но некоторые процессы могут иметь и несколько потоков выполнения. Операционная система делает все, что возможно, для обеспечения равноправного распределения процессорного времени между процессами и их потоками (примечание: "равноправие" не означает "поровну"), пытаясь минимизировать накладные расходы, связанные с переключением соответствующих контекстов.
Возможность имитации параллельной обработки на машинах с единственным процессором является величайшим благом, но это благо не дается бесплатно. Пользуйтесь им, но пользуйтесь осмотрительно.
На многих серверах и некоторых настольных компьютерах устанавливаются несколько микропроцессоров. "Многоядерные" ("multicore") системы с дополнительными микропроцессорами становятся все более распространенными; такие микропроцессоры размещаются на одном кристалле и предоставляют многие из тех преимуществ, которые обеспечиваются наличием нескольких физически независимых процессоров. Многопроцессорные системы обеспечивают возможность подлинно одновременного выполнения кода.
Читать дальшеИнтервал:
Закладка: