Хэл Фултон - Программирование на языке Ruby
- Название:Программирование на языке Ruby
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2007
- Город:Москва
- ISBN:5-94074-357-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Хэл Фултон - Программирование на языке Ruby краткое содержание
Ruby — относительно новый объектно-ориентированный язык, разработанный Юкихиро Мацумото в 1995 году и позаимствовавший некоторые особенности у языков LISP, Smalltalk, Perl, CLU и других. Язык активно развивается и применяется в самых разных областях: от системного администрирования до разработки сложных динамических сайтов.
Книга является полноценным руководством по Ruby — ее можно использовать и как учебник, и как справочник, и как сборник ответов на вопросы типа «как сделать то или иное в Ruby». В ней приведено свыше 400 примеров, разбитых по различным аспектам программирования, и к которым автор дает обстоятельные комментарии.
Издание предназначено для программистов самого широкого круга и самой разной квалификации, желающих научиться качественно и профессионально работать на Ruby.
Программирование на языке Ruby - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Однако тут есть две проблемы. Во-первых, слишком многословно. Надо бы сделать покомпактнее.
Во-вторых, при такой сортировке приходится многократно обращаться к диску, а это довольно дорогая операция (по сравнению с операциями в оперативной памяти). Хуже того, одна и та же операция может выполняться несколько раз.
Метод sort_by
решает обе проблемы. Вот «правильный» способ:
files = files.sort_by {|x| File.size(x) }
Здесь каждый ключ вычисляется ровно один раз, а затем сохраняется в виде пары ключ-данные. Для небольших массивов производительность при таком подходе может даже снизиться, зато код получается более понятным.
Не существует метода sort_by!
. Но при желании вы можете написать его самостоятельно.
А как обстоит дело с сортировкой по нескольким ключам? Предположим, что имеется массив объектов, который нужно отсортировать по трем атрибутам: имени, возрасту и росту. Из того, что массивы можно сравнивать, следует, что такое решение будет работать:
list = list.sort_by {|x| [x.name, x.age, x.height] }
Конечно, элементы массива могут быть и не такими простыми. Допустимы произвольно сложные выражения.
8.1.6. Выборка из массива по заданному критерию
Иногда нужно найти в массиве один или несколько элементов так, как будто мы опрашиваем таблицу в базе данных. Для этого есть несколько способов; рассмотренные ниже реализованы в подмешанном модуле Enumerable
.
Метод detect
находит не больше одного элемента. Он принимает блок (которому элементы передаются последовательно) и возвращает первый элемент, для которого значение блока оказывается равным true
.
x = [5, 8, 12, 9, 4, 30]
# Найти первый элемент, кратный 6.
x.detect {|e| e % 6 == 0 } #12
# Найти первый элемент, кратный 7.
c.detect {|e| e % 7 == 0 } # nil
Разумеется, хранящиеся в массиве объекты могут быть произвольно сложными, равно как и условие, проверяемое в блоке.
Метод find
— синоним detect
. Метод find_all
возвращает несколько элементов, а не один-единственный; select
— синоним find_all
.
# Продолжение предыдущего примера...
x.find {|e| e % 2 == 0} # 8
x.find_all {|e| e % 2 == 0} # [8, 12, 4, 30]
x.select {|e| e % 2 == 0} # [8, 12, 4, 30]
Метод grep
вызывает оператор сравнения (то есть оператор ветвящегося равенства) для сопоставления каждого элемента с заданным образцом. В простейшей форме он возвращает массив, состоящий из элементов, соответствующих образцу. Так как используется оператор ===
, то образец не обязан быть регулярным выражением. (Имя grep
пришло из UNIX и связано с командой старого редактора g/re/p
.)
а = %w[January February March April May]
a.grep(/ary/} # ["January, "February"]
b = [1, 20, 5, 7, 13, 33, 15, 28]
b.grep(12..24) # [20, 13, 15]
Существует также блочная форма, которая позволяет преобразовать каждый результат перед записью в массив. Получающийся в результате массив содержит значения, возвращенные блоком, а не те, что были в блок первоначально переданы:
# продолжение предыдущего примера...
# Будем сохранять длины строк.
a.grep(/ary/) {|m| m.length} # [7, 8]
# Будем сохранять квадраты исходных элементов.
b.grep(12..24) { |n| n*n} # {400, 169, 225}
Метод reject
— полная противоположность select
. Он исключает из массива элементы, для которых блок возвращает значение true
. Имеется также вариант reject!
для модификации массива «на месте»:
с = [5, 8, 12, 9, 4, 30]
d = с.reject {|e| е % 2 == 0} # [5, 9]
b.reject! {|e| е % 3 == 0}
# с равно [5, 8, 4]
Методы min
и max
ищут минимальное и максимальное значение в массиве. У каждого метода есть две формы. В первой используется сравнение «по умолчанию», что бы это ни означало в конкретной ситуации (на базе оператора <=>
). Во второй форме применяется блок для выполнения нестандартного сравнения.
а = %w[Elrond Galadriel Aragorn Saruman Legolas]
b = a.min # "Aragorn"
с = a.max # "Saruman"
d = a.min {|x,y| x.reverse <=> y.reverse} # "Elrond"
e = a.max {|x,y| x.reverse <=> y.reverse} # "Legolas"
Чтобы найти индекс минимального или максимального элемента (в предположении, что такой элемент один), применяется метод index
:
# Продолжение предыдущего примера...
i = a.index a.min # 2
j = a.index a.max # 3
Такую же технику можно использовать и в других похожих ситуациях. Однако, если элемент не единственный, то будет найден только первый.
8.1.7. Специализированные функции индексирования
Для отображения индексов на элементы массива интерпретатор языка пользуется функцией индексирования. Поскольку методы доступа к элементам массива можно переопределять, мы можем реализовать любой способ индексирования.
Например, ниже реализован массив, в котором индексы начинаются с 1, а не с нуля:
class Array2 < Array
def [] (index)
if index>0
super(index-1)
else
raise IndexError
end
end
def []=(index,obj)
if index>0
super(index-1,obj)
else
raise IndexError
end
end
end
x = Array2.new
x[1]=5
x[2]=3
x[0]=1 # Ошибка.
x[-1]=1 # Ошибка.
Отметим, что отрицательные индексы (от конца массива) здесь запрещены. Имейте в виду, что в реальной задаче придется внести и другие изменения, например переопределить метод slice
и пр. Но общую идею вы поняли.
Аналогичный подход можно применить для реализации многомерных массивов (мы еще вернемся к ним в разделе 8.1.11).
Можно также реализовать нечто вроде треугольной матрицы, как показано ниже. Это частный случай двумерного массива, в котором элемент в позиции x,y
совпадает с элементом в позиции y,x
(поэтому хранить можно только один). Иногда это бывает полезно, например для хранения неориентированного графа (как мы покажем ближе к концу главы).
class TriMatrix
def initialize
@store = []
end
def [](x,y)
if x > у
index = (x*x+x)/2 + y
@store[index]
else
raise IndexError
end
end
def []=(x,y,v)
if x > y
index = (x*x+x)/2 + y
@store[index] = v
else
raise IndexError
end
end
end
t = TriMatrix.new
t[3,2] = 1
puts t[3,2] # 1
puts t[2,3] # IndexError
В этом примере мы реализовали матрицу так, что номер строки должен быть больше или равен номеру столбца. Но можно было бы просто отобразить симметричные пары индексов на один и тот же элемент. Проектное решение зависит от предполагаемого способа использования матрицы.
Можно было унаследовать классу Array
, но нам кажется, что наше решение понять легче. Формула индексирования довольно сложна, но десяти минут с карандашом и бумагой хватит, чтобы убедить любого в ее правильности. Чтобы сделать данный класс по-настоящему полезным, надо бы немного усовершенствовать его; оставляем вам это в качестве упражнения.
Интервал:
Закладка: