Роман Сузи - Язык программирования Python
- Название:Язык программирования Python
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роман Сузи - Язык программирования Python краткое содержание
Курс посвящен одному из бурно развивающихся и популярных в настоящее время сценарных языков программирования — Python. Язык Python позволяет быстро создавать как прототипы программных систем, так и сами программные системы, помогает в интеграции программного обеспечения для решения производственных задач. Python имеет богатую стандартную библиотеку и большое количество модулей расширения практически для всех нужд отрасли информационных технологий. Благодаря ясному синтаксису изучение языка не составляет большой проблемы. Написанные на нем программы получаются структурированными по форме, и в них легко проследить логику работы. На примере языка Python рассматриваются такие важные понятия как: объектно–ориентированное программирование, функциональное программирование, событийно–управляемые программы (GUI–приложения), форматы представления данных (Unicode, XML и т.п.). Возможность диалогового режима работы интерпретатора Python позволяет существенно сократить время изучения самого языка и перейти к решению задач в соответствующих предметных областях. Python свободно доступен для многих платформ, а написанные на нем программы обычно переносимы между платформами без изменений. Это обстоятельство позволяет применять для изучения языка любую имеющуюся аппаратную платформу.
Язык программирования Python - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
print time.strftime("%d %B %Y", time.localtime (time.time()))
locale.setlocale(locale.LC_ALL, "ru_RU.KOI8–R")
print time.strftime("%d %B %Y", time.localtime (time.time()))
В результате:
18 November 2004
18 Ноября 2004
При интернационализации программы важно не только предусмотреть возможность использования нескольких культурных сред, но и перевод сообщений и меню программы на соответствующий язык. Модуль gettext
позволяет упростить этот процесс достаточно стандартным способом. Основные сообщения программы пишутся на английском языке. А переводы строк, отмеченных в программе специальным образом, даются в виде отдельных файлов, по одному на каждый язык (или культурную среду). Уточнить нюансы использования gettext
можно по документации к Python.
Поддержка цикла разработки
Модули этого раздела помогают поддерживать документацию, производить регрессионное тестирование, отлаживать и профилировать программы на Python, а также обслуживают распространение готовых программ, создавая среду для конфигурирования и установки пакетов.
В качестве иллюстрации можно предположить, что создается модуль для вычисления простых чисел по алгоритму «решето Эратосфена». Модуль будет находиться в файле Sieve.py
и состоять из одной функции primes(N)
, которая в результате своей работы дает все простые (не имеющие натуральных делителей кроме себя и единицы) числа от 2
до N
:
import sets
import math
"""Модуль для вычисления простых чисел от 2 до N """
def primes(N):
"""Возвращает все простые от 2 до N"""
sieve = sets.Set(range(2, N))
for i in range(2, math.sqrt(N)):
if i in sieve:
sieve -= sets.Set(range(2*i, N, i))
return sieve
Модуль pdb
предоставляет функции отладчика с интерфейсом — командной строкой. Сессия отладки вышеприведенного модуля могла бы быть такой:
>>> import pdb
>>> pdb.runcall(Sieve.primes, 100)
> /home/rnd/workup/intuit–python/examples/Sieve.py(15)primes()
-> sieve = sets.Set(range(2, N))
(Pdb) l
10 import sets
11 import math
12 """Модуль для вычисления простых чисел от 2 до N """
13 def primes(N):
14 """Возвращает все простые от 2 до N"""
15 -> sieve = sets.Set(range(2, N))
16 for i in range(2, int(math.sqrt(N))):
17 if i in sieve:
18 sieve -= sets.Set(range(2*i, N, i))
19 return sieve
20
(Pdb) n
> /home/rnd/workup/intuit–python/examples/Sieve.py(16)primes()
-> for i in range(2, int(math.sqrt(N))):
(Pdb) n
> /home/rnd/workup/intuit–python/examples/Sieve.py(17)primes()
-> if i in sieve:
(Pdb) n
> /home/rnd/workup/intuit–python/examples/Sieve.py(18)primes()
-> sieve -= sets.Set(range(2*i, N, i))
(Pdb) n
> /home/rnd/workup/intuit–python/examples/Sieve.py(16)primes()
-> for i in range(2, int(math.sqrt(N))):
(Pdb) p sieve
Set([2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,
81, 83, 85, 87, 89, 91, 93, 95, 97, 99])
(Pdb) n
> /home/rnd/workup/intuit–python/examples/Sieve.py(17)primes()
-> if i in sieve:
(Pdb) n
> /home/rnd/workup/intuit–python/examples/Sieve.py(18)primes()
-> sieve -= sets.Set(range(2*i, N, i))
(Pdb) n
> /home/rnd/workup/intuit–python/examples/Sieve.py(16)primes()
-> for i in range(2, int(math.sqrt(N))):
(Pdb) p sieve
Set([2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49,
53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97])
С помощью профайлераразработчики программного обеспечения могут узнать, сколько времени занимает исполнение различных функций и методов.
Продолжая пример с решетом Эратосфена, стоит посмотреть, как тратится процессорное время при вызове функции primes()
:
>>> profile.run("Sieve.primes(100000)")
709 function calls in 1.320 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.010 0.010 1.320 1.320 :1(?)
1 0.140 0.140 1.310 1.310 Sieve.py:13(primes)
1 0.000 0.000 1.320 1.320 profile:0(Sieve.primes(100000))
0 0.000 0.000 profile:0(profiler)
65 0.000 0.000 0.000 0.000 sets.py:119(__iter__)
314 0.000 0.000 0.000 0.000 sets.py:292(__contains__)
65 0.000 0.000 0.000 0.000 sets.py:339(_binary_sanity_check)
66 0.630 0.010 0.630 0.010 sets.py:356(_update)
66 0.000 0.000 0.630 0.010 sets.py:425(__init__)
65 0.010 0.000 0.540 0.008 sets.py:489(__isub__)
65 0.530 0.008 0.530 0.008 sets.py:495(difference_update)
Здесь ncalls
— количество вызовов функции или метода, tottime
— полное время выполнения кода функции (без времени нахождения в вызываемых функциях), percall
— тоже, в пересчете на один вызов, cumtime
— аккумулированное время нахождения в функции, вместе со всеми вызываемыми функциями. В последнем столбце приведено имя файла, номер строки с функцией или методов и его имя.
«Странные» имена, например, __iter__
, __contains__
и __isub__
— имена методов, реализующих итерацию по элементам, проверку принадлежности элемента ( in
) и операцию -=
. Метод __init__
— конструктор объекта (в данном случае — множества).
При разработке программного обеспечения рекомендуется применять так называемые регрессионные испытания. Для каждого модуля составляется набор тестов, по возможности таким образом, чтобы проверялись не только типичные вычисления, но и «крайние», вырожденные случаи, чтобы испытания затронули каждую ветку алгоритма хотя бы один раз. Тест для данного модуля (написанный сразу после того, как определен интерфейс модуля) находится в файле test_Sieve.py
:
# file: test_Sieve.py
import Sieve, sets
import unittest
class TestSieve(unittest.TestCase):
def setUp(self):
pass
def testone(self):
primes = Sieve.primes(1)
self.assertEqual(primes, sets.Set())
def test100(self):
primes = Sieve.primes(100)
self.assert_(primes == sets.Set([2, 3, 5, 7, 11, 13,
17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, 97]))
if __name__ == '__main__':
unittest.main()
Тестовый модуль состоит из определения класса, унаследованного от класса unittest.TestCase
, в котором описывается подготовка к испытаниям (метод setUp
) и сами испытания — методы, начинающиеся на test
. В данном случае таких испытаний всего два: в первом испытывается случай N=1
, а во втором — N=100
.
Запуск тестов производится выполнением функции unittest.main()
. Вот как выглядят успешные испытания:
$ python test_Sieve.py
..
----------------------------------------------------------
Ran 2 tests in 0.002s
OK
В процессе разработки перед каждым выпуском все модули прогоняются через регрессионные испытания, чтобы обнаружить, не были ли внесены ошибки. Однако никакие тесты в общем случае не могут гарантировать безошибочности сложной программы. При дополнении модулей тесты также могут быть дополнены, чтобы отразить изменения в проекте.
Кстати, сам Python и его стандартная библиотека имеют тесты для каждого модуля — они находятся в каталоге test
в месте, где развернуты файлы поставки Python, и являются частью пакета test
.
Интервал:
Закладка: