Роберт Лав - Разработка ядра Linux
- Название:Разработка ядра Linux
- Автор:
- Жанр:
- Издательство:Издательский дом Вильямс
- Год:2006
- Город:Москва
- ISBN:5-8459-1085-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роберт Лав - Разработка ядра Linux краткое содержание
В книге детально рассмотрены основные подсистемы и функции ядер Linux серии 2.6, включая особенности построения, реализации и соответствующие программны интерфейсы. Рассмотренные вопросы включают: планирование выполнения процессов, управление временем и таймеры ядра, интерфейс системных вызовов, особенности адресации и управления памятью, страничный кэш, подсистему VFS, механизмы синхронизации, проблемы переносимости и особенности отладки. Автор книги является разработчиком основных подсистем ядра Linux. Ядро рассматривается как с теоретической, так и с прикладной точек зрения, что может привлечь читателей различными интересами и потребностями.
Книга может быть рекомендована как начинающим, так и опытным разработчикам программного обеспечения, а также в качестве дополнительных учебных материалов.
Разработка ядра Linux - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Процесс имеет право доступа только к действительным областям памяти. Более того, на область памяти могут быть установлены права только для чтения или запрет на выполнение. Если процесс обращается к адресу памяти, который не находится в действительной области памяти, или доступ к действительной области выполняется запрещенным образом, то ядро уничтожает процесс с ужасным сообщением "Segmentation Fault" (ошибка сегментации).
Области памяти могут содержать следующую нужную информацию.
• Отображение выполняемого кода из выполняемого файла в область памяти процесса, которая называется сегментом кода ( text section ).
• Отображение инициализированных переменных из выполняемого файла в область памяти процесса, которая называется сегментом данных ( data section ).
• Отображение страницы памяти, заполненной нулями, в область памяти процесса, которая содержит неинициализированные глобальные переменные и называется сегментом bss [79] Термин "BSS" сложился исторически и является достаточно старым. Он означает block started by symbol ( блок, начинающийся с символа ). Неинициализированные переменные в выполняемом файле не хранятся, поскольку с ними не связано никакого значения. Тем не менее стандарт языка С требует, чтобы неинициализированным переменным присваивалось определенное значение по умолчанию (обычно все заполняется нулями). Поэтому ядро загружает переменные (без их значений) из выполняемого файла в память и отображает в эту память нулевую страницу, тем самым переменным присваивается нулевое значение без необходимости зря тратить место в объектном файле на ненужную инициализацию.
( bss section ). Нулевая страница памяти (zero page, страница памяти, заполненная нулями) — это страница памяти, которая полностью заполнена нулевыми значениями и используется, например, для указанной выше цели.
• Отображение страницы памяти, заполненной нулями, в память процесса, которая используется в качестве стека процесса пространства пользователя (не нужно путать со стеком процесса в пространстве ядра, который является отдельной структурой данных и управляется и используется ядром).
• Дополнительные сегменты кода, данных и BSS каждой совместно используемой библиотеки, таких как библиотека libc и динамический компоновщик, которые загружаются в адресное пространство процесса.
• Все файлы, содержимое которых отображено в память.
• Все области совместно используемой памяти.
• Все анонимные отображения в память, как, например, связанные с функцией malloc()
[80] В более новых версиях библиотеки glibc функция malloc() реализована через системный вызов mmap() , а не через вызов brk() .
.
Каждое действительное значение адреса памяти в адресном пространстве процесса принадлежит только и только одной области памяти (области памяти не перекрываются). Как будет показано, для каждого отдельного участка памяти в выполняющемся процессе существует своя область: стек, объектный код, глобальные переменные, отображенный в память файл и т.д.
Дескриптор памяти
Ядро представляет адресное пространство процесса в виде структуры данных, которая называется дескриптором памяти . Эта структура содержит всю информацию, которая относится к адресному пространству процесса. Дескриптор памяти представляется с помощью структуры struct mm_struct
, которая определена в файле [81] Между дескриптором процесса, дескриптором памяти и соответствующими функциями существует тесная связь. Поэтому структура struct mm_struct и определена в заголовочном файле sched.h .
.
Рассмотрим эту структуру с комментариями, поясняющими назначение каждого поля.
struct mm_struct {
struct vm_area_struct *mmap; /* список областей памяти */
struct rb_root mm_rb; /* красно-черное дерево
областей памяти */
struct vm_area_struct *mmap_cache; /* последняя использованная
область памяти */
unsigned long free_area_cache; /* первый незанятый участок
адресного пространства */
pgd_t *pgd; /* глобальный каталог страниц */
atomic_t mm_users; /* счетчик пользователей адресного
пространства */
atomic_t mm_count; /* основной счетчик использования */
int map_count; /* количество областей памяти */
struct rw_semaphore mmap_sem; /* семафор для областей памяти */
spinlock_t page_table_lock; /* спин-блокировка
таблиц страниц */
struct list_head mmlist; /* список всех структур mm_struct */
unsigned long start_code; /* начальный адрес сегмента кода */
unsigned long end code; /* конечный адрес сегмента кода */
unsigned long start_data; /* начальный адрес сегмента данных */
unsigned long end_data; /* конечный адрес сегмента данных */
unsigned long start_brk; /* начальный адрес сегмента "кучи" */
unsigned long brk; /* конечный адрес сегмента "кучи" */
unsigned long start_stack; /* начало стека процесса */
unsigned long arg_start; /* начальный адрес
области аргументов */
unsigned long arg_end; /* конечный адрес
области аргументов */
unsigned long env_start; /* начальный адрес
области переменных среды */
unsigned long env_end; /* конечный адрес
области переменных среды */
unsigned long rss; /* количество физических страниц памяти */
unsigned long total_vm; /* общее количество страниц памяти */
unsigned long locked_vm; /* количество заблокированных страниц
памяти */
unsigned long def_flags; /* флаги доступа, используемые
по умолчанию */
unsigned long cpu_vm_mask; /* маска отложенного переключения
буфера TLB */
unsigned long swap_address; /* последний сканированный адрес */
unsigned dumpable:1; /* можно ли создавать файл core? */
int used_hugetlb; /* используются ли гигантские
страницы памяти (hugetlb)? */
mm_context_t context; /* данные, специфичные для аппаратной
платформы */
int core_waiters; /* количество потоков, ожидающих на
создание файла core */
struct completion *core_startup_done; /* условная переменная начала
создания файла core */
struct completion core_done; /* условная переменная завершения
создания файла core */
rwlock_t ioctx_list_lock; /* блокировка списка асинхронного
ввода-вывода (AIO) */
struct kioctx *ioctx_list; /* список асинхронного ввода-вывода (AIO) */
struct kioctx default_kioctx; /* контекст асинхронного ввода-
вывода, используемый по умолчанию */
};
Поле mm_users
— это количество процессов, которые используют данное адресное пространство. Например, если одно и то же адресное пространство совместно используется двумя потоками, то значение поля mm_users
равно двум. Поле mm_count
— это основной счетчик использования структуры mm_struct
. Наличие пользователей структуры, которым соответствует поле mm_users
, приводит к увеличению счетчика mm_count
на единицу. В предыдущем примере значение поля mm_count
равно единице. Когда значение поля mm_users
становится равным нулю (т.е. когда два потока завершатся), только тогда значение поля mm_count
уменьшается на единицу. Когда значение поля mm_count становится равным нулю, то на соответствующую структуру mm_struct
больше нет ссылок, и она освобождается, Поддержка двух счетчиков позволяет ядру отличать главный счетчик использования ( mm_count
) от количества процессов, которые используют данную структуру ( mm_users
).
Интервал:
Закладка: