Роберт Лав - Разработка ядра Linux

Тут можно читать онлайн Роберт Лав - Разработка ядра Linux - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство Издательский дом Вильямс, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Разработка ядра Linux
  • Автор:
  • Жанр:
  • Издательство:
    Издательский дом Вильямс
  • Год:
    2006
  • Город:
    Москва
  • ISBN:
    5-8459-1085-4
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Роберт Лав - Разработка ядра Linux краткое содержание

Разработка ядра Linux - описание и краткое содержание, автор Роберт Лав, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге детально рассмотрены основные подсистемы и функции ядер Linux серии 2.6, включая особенности построения, реализации и соответствующие программны интерфейсы. Рассмотренные вопросы включают: планирование выполнения процессов, управление временем и таймеры ядра, интерфейс системных вызовов, особенности адресации и управления памятью, страничный кэш, подсистему VFS, механизмы синхронизации, проблемы переносимости и особенности отладки. Автор книги является разработчиком основных подсистем ядра Linux. Ядро рассматривается как с теоретической, так и с прикладной точек зрения, что может привлечь читателей различными интересами и потребностями.

Книга может быть рекомендована как начинающим, так и опытным разработчикам программного обеспечения, а также в качестве дополнительных учебных материалов.

Разработка ядра Linux - читать онлайн бесплатно полную версию (весь текст целиком)

Разработка ядра Linux - читать книгу онлайн бесплатно, автор Роберт Лав
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Системные вызовы sched_setscheduler()и sched_getcheduler()позволяют соответственно установить и получить значение стратегии планирования и приоритета реального времени для указанного процесса. Реализация этих функций, так же как и для большинства остальных системных вызовов, включает большое количество разнообразных проверок, инициализаций и очистку значений аргументов. Полезная работа включает в себя только чтение или запись полей policyи rt_priorityструктуры task_structуказанного процесса.

Системные вызовы sched_setparam()и sched_getparam()позволяют установить и получить значение приоритета реального времени для указанного процесса. Последняя функция просто возвращает значение поля rt_priority, инкапсулированное в специальную структуру sched_param. Вызовы sched_get_priority_max()и sched_get_priority_min()возвращают соответственно максимальное и минимальное значение приоритета реального времени для указанной стратегии планирования. Максимальное значение приоритета для стратегий планирования реального времени равно ( MAX_USER_RT_PRIO-1), а минимальное значение — 1.

Для обычных задач функция nice()увеличивает значение статического приоритета вызывающего процесса на указанную в аргументе величину. Только пользователь root может указывать отрицательные значения, т.е. уменьшать значение параметра nice и соответственно увеличивать приоритет. Функция nice()вызывает функцию ядра set_user_nice(), которая устанавливает значение полей static_prioи prioструктуры task_struct.

Системные вызовы управления процессорной привязкой

Планировщик ОС Linux может обеспечивать жесткую процессорную привязку (processor affinity). Хотя планировщик пытается обеспечивать мягкую или естественную привязку путем удержания процессов на одном и том же процессоре, он также позволяет пользователям сказать: "Эти задания должны выполняться только на указанных процессорах независимо ни от чего". Значение жесткой привязки хранится в виде битовой маски в поле cpus_allowedструктуры task_struct. Эта битовая маска содержит один бит для каждого возможного процессора в системе. По умолчанию все биты установлены в значение 1, и поэтому процесс потенциально может выполняться на всех процессорах в системе. Пользователь с помощью функции sched_setaffinity()может указать другую битовую маску с любой комбинацией установленных битов. Аналогично функция sched_getaffinity()возвращает текущее значение битовой маски cpus_allowed.

Ядро обеспечивает жесткую привязку очень простым способом. Во-первых, только что созданный процесс наследует маску привязки от родительского процесса. Поскольку родительский процесс выполняется на дозволенном процессоре, то и порожденный процесс также будет выполняться на дозволенном процессоре. Во-вторых, когда привязка процесса изменяется, ядро использует миграционные потоки ( migration threads ) для проталкивания задания на дозволенный процессор. Следовательно, процесс всегда выполняется только на том процессоре, которому соответствует установленный бит в поле cpus_allowedдескриптора процесса.

Передача процессорного времени

Операционная система Linux предоставляет системный вызов sched_yield()как механизм, благодаря которому процесс может явно передать процессор под управление другим ожидающим процессам. Этот вызов работает путем удаления процесса из активного массива приоритетов (где он в данный момент находится, потому что процесс выполняется) с последующим помещением этого процесса в истекший массив. Получаемый аффект состоит не только в том, что процесс вытесняется и становится последним в списке заданий с соответствующим приоритетом, а также в том, что помещение процесса в истекший массив гарантирует, что этот процесс не будет выполняться некоторое время. Так как задачи реального времени никогда не могут быть помещены в истекший массив, они составляют специальный случай. Поэтому они только перемещаются в конец списка заданий с таким же значением приоритета (и не помещаются в истекший массив). В более ранних версиях ОС. Linux семантика вызова sched_yield()была несколько иной. В лучшем случае задание только лишь перемещалось в конец списка заданий с данным приоритетом. Сегодня для пользовательских программ и даже для потоков пространства ядра должна быть полная уверенность в том, что действительно необходимо отказаться от использования процессора, перед тем как ввязывать функцию sched_yield().

В коде ядра, для удобства, можно вызывать функцию yield(), которая проверяет, что состояние задачи равно TASK_RUNNING, а после этого вызывает функцию sched_yield(). Пользовательские программы должны использовать системный вызов sched_yield().

В завершение о планировщике

Планировщик выполнения процессов является важной частью ядра, так как выполнение процессов (по крайней мере, для большинства из нас) — это основное использование компьютера. Тем не менее, удовлетворение всем требованиям, которые предъявляются к планировщику — не тривиальная задача. Большое количество готовых к выполнению процессов, требования масштабируемости, компромисс между производительностью и временем реакции, а также требования для различных типов загрузки системы приводят к тому, что тяжело найти алгоритм, который подходит для всех случаев. Несмотря на это, новый планировщик процессов ядра Linux приближается к тому, чтобы удовлетворить всем этим требованиям и обеспечить оптимальное решение для всех случаев, включая отличную масштабируемость и привлекательную реализацию.

Проблемы, которые остались, включают возможность точной настройки (или даже полную замену) алгоритма оценки степени интерактивности задания, который приносит много пользы, когда работает правильно, и приносит много неудобств, когда выполняет предсказания неверно. Работа над альтернативными реализациями продолжается. Когда-нибудь мы увидим новую реализацию в основном ядре.

Улучшение поведения планировщика для NUMA систем (систем с неоднородным доступом к памяти) становится все более актуальной задачей, так как количество машин на основе NUMA-платформ возрастает. Поддержка доменов планирования ( scheduler domain ) — абстракция, которая позволяет описать топологию процессов; она была включена в ядро 2.6 в одной из первых версий.

Эта глава посвящена теории планирования процессов, а также алгоритмам и специфической реализации планировщика ядра Linux. В следующей главе будет рассмотрен основной интерфейс, который предоставляется ядром для выполняющихся процессов, — системные вызовы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роберт Лав читать все книги автора по порядку

Роберт Лав - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Разработка ядра Linux отзывы


Отзывы читателей о книге Разработка ядра Linux, автор: Роберт Лав. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x