Кирилл Еременко - Работа с данными в любой сфере
- Название:Работа с данными в любой сфере
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-9614-2652-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Кирилл Еременко - Работа с данными в любой сфере краткое содержание
Работа с данными в любой сфере - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Данные не приказывают людям идти и смотреть фильмы о супергероях и не смотреть французские сюрреалистические фильмы; они прислушиваются к тому, чего люди хотят и от чего получают удовольствие [5] Пример того, какие проблемы и возможности связаны с аналитикой данных в киноиндустрии, см. у Mishra and Sharma (2016), в докладе которых анализируется кинопроизводство и продюсирование в Индии.
. Если вы считаете, что существует проблема удушения творчества, то это не вина данных – это вина нашего общества. Я не устану подчеркивать, что данные являются прошлым. Это всего лишь запись информации. Если вы хотите видеть больше французских сюрреалистических фильмов, то просто идите и смотрите их – и убедитесь, что после просмотра вы о них говорите [6] Естественно, на пути этого подхода есть препятствия. Вы не сможете победить миллионы поклонников супергероев в Китае, которые в значительной степени отвечают за то, что Голливуд продолжает наращивать выпуск фильмов о мужчинах (и женщинах) в колготках, спасающих мир от зла. Вопросы о том, как данные влияют на творчество, возможно, выходят за рамки этой книги, но я бы сказал, что всегда существовало и всегда будет существовать пространство для творчества, даже в мире, управляемом данными. Мы не становимся тупее; мы просто делаем промышленность более эффективной.
. Может показаться, что вы просто добавляете шума в интернете, но этот «шум» быстро обрабатывается и становится доступным для использования повсюду. Благодаря данным в нынешнюю эпоху наши голоса действительно могут быть услышаны и иметь реальную власть – так почему бы не воспользоваться этим?
Кроме того, модели для использования данных еще несовершенны. В случае с медиаиндустрией другие корпорации приняли концепцию Netflix, и некоторые могут отметить, что одни преуспели больше, а другие – меньше. Но опять же, в этом нет заслуги данных, это творческий вклад людей. В конце концов, именно здесь находится нынешний предел нашей способности использовать данные для создания контента. Наверное, мы сможем оценить вероятное число людей, заинтересованных в концепции, но на карту поставлено гораздо больше, так как конечный успех любой формы развлечений будет обусловлен талантом ее создателя. Пусть это станет предупреждением для писателей и режиссеров, которые надеются получить легкие результаты, полагаясь исключительно на данные: базы данных, которые показывают успех фильмов разных жанров, могут быть полезным руководством для последующих действий, но будут оставаться только руководством, поскольку результат работы зависит от таланта человека.
Почему данные важны сейчас
Многие уже в курсе того, что технологии в будущем могут существенно повлиять на рабочие места. Если вы чувствуете себя достаточно смелым, введите в поисковую строку Google «технологическое воздействие на рабочие места» / «technological impact on jobs» – и вы увидите, что несметное количество статей посвящено вероятности автоматизации в сфере вашей деятельности [7] Опасения по поводу технологической безработицы не новы – Джон Мейнард Кейнс писал об этом в 1930-х гг.: «Мы страдаем от новой болезни, названия которой некоторые читатели, возможно, еще не слышали, но о которой они многое услышат в ближайшие годы, а именно – о технологической безработице» (Кейнс, 1963).
. Хотя эта информация подкреплена данными, я бы сказал, что, возможно, мнение исследователей в некоторой степени субъективно, если принять во внимание задачи, которые необходимо выполнять на конкретных рабочих местах. Так, я бы, конечно, не рекомендовал учиться на спортивного арбитра по той причине, что эта работа зависит от данных об игре, – машины неизбежно будут поставлять более точные данные, чтобы подтвердить или опровергнуть любые заявления соперников. Судья может быть данью традиции, которая делает опыт более личностным или захватывающим прямо сейчас , но, на мой взгляд, ностальгия, связанная с профессией, не означает, что она будет востребована вечно.
Даже после того, как выяснилось, насколько всепоглощающими являются данные, некоторые все еще могут надеяться на то, что наука о данных не повлияет на их бизнес в ближайшее время. В конце концов, нужно время, чтобы что-то произошло. Но думать таким образом было бы большой ошибкой, потому что это отрицало бы принцип закона Мура.
Закон Мура – это закон прогнозирования. Предложенный соучредителем Intel Гордоном Муром в 1965 г., он в первую очередь касался ожидаемого со временем увеличения числа транзисторов (устройств, используемых для управления электрическим током) на квадратный дюйм в интегральных схемах (например, компьютерных микросхемах, микропроцессорах, материнских платах). Было замечено, что число этих транзисторов примерно удваивается каждые два года, и закон утверждал, что тенденция будет продолжаться. На сегодняшний день это подтвердилось [8] Относительно транзисторной инфраструктуры у закона Мура есть ограничения. При размере около 1 нм свойства полупроводникового материала нарушаются такими квантовыми эффектами, как квантовое туннелирование. Кроме того, дальнейшее развитие инфраструктуры потребует альтернативы кремнию, который сейчас используется в качестве основного материала. – Прим. науч. ред.
.
В восприятии непрофессионала это означает, что, если вы пойдете в свой местный компьютерный магазин сегодня и купите компьютер за £1000, а через два года приобретете еще один тоже за £1000 в том же магазине, вторая машина будет в два раза мощнее, хотя она стоит столько же.
Многие применили этот закон к растущему как грибы количеству достижений в области науки о данных. Она является одной из самых быстроразвивающихся академических дисциплин, и занимающиеся ею профессионалы используют все более изощренные способы, чтобы найти новые средства для сбора данных, построения экономичных систем их хранения и разработки алгоритмов, которые превращают все эти порции больших данных в ценные идеи. Доводилось ли вам когда-либо чувствовать, что технологии движутся вперед так быстро, что вы не успеваете идти в ногу со временем? Тогда подумайте об аналитиках данных. Они играют в салочки с технологией, которая еще даже не изобретена .
Кейс:Siri
В качестве примера рассмотрим развитие технологии распознавания речи. Создатели Siri Даг Киттлаус, Адам Чейер и Том Грубер разработали умного личного помощника задолго до того, как технология стала достаточно зрелой, чтобы можно было реализовать идеи и вывести их на рынок. Авторы Siri создали инструменты и алгоритмы для работы с имевшимися у них данными, чтобы поддерживать технологию распознавания речи, которая тогда еще не была изобретена.
Читать дальшеИнтервал:
Закладка: