Марк Джеффри - Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый
- Название:Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый
- Автор:
- Жанр:
- Издательство:Манн Иванов Фербер
- Год:2013
- Город:Москва
- ISBN:978-5-91657-666-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марк Джеффри - Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый краткое содержание
На страницах книги он подробно объясняет, как измерить эффективность маркетинга, используя для этого всего лишь 15 показателей. На примерах из практики международных компаний он последовательно и четко описывает принципы работы с данными.
Прочитав эту книгу, вы узнаете: как использовать ключевые показатели для повышения эффективности маркетинга, с какими сложностями при анализе данных могут столкнуться маркетологи, а также как реальные компании применяют на практике описываемые методики.
Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Рис. 9.4.Данные об оттоке за 30 и 120 дней в EarthLink для маркетинговой кампании по удержанию клиентов, пользовавшихся коммутируемым доступом

Источник: EarthLink
Затратная по времени регрессионная модель была заменена в EarthLink интуитивно более понятным методом дерева решений. Теперь создание десятков новых моделей занимает не недели, а считаные дни. Иными словами, у компании есть больше времени на анализ и интерпретацию данных, создание инноваций в области целевого маркетинга, разработку и реализацию стратегий в составе универсальных команд.
Однако кое-что в этом процессе заслуживает пристального внимания. Вот что рассказал мне Роузел:
Многие маркетеры при проведении подобного анализа часто совершают ошибку. В качестве контрольной группы для анализа эффективности своих мероприятий они берут всю клиентскую базу. Но она по своим характеристикам может довольно сильно отличаться от группы, на которую направлены ваши усилия, поэтому влияние может показаться незначительным. Чтобы оценить реальное влияние, нужно сравнивать клиентов, получивших предложение, с клиентами со схожими характеристиками, не получившими его. И тогда вы поймете, насколько велико влияние маркетинга.
С чего начала EarthLink? «Четыре года назад у нас уже была система показателей, однако измерения проводились для малой доли маркетинговых программ. Очевидно, что у нас отсутствовала культура маркетинга, основанного на данных. Вместо того чтобы проводить анализ и вникать в ситуацию, мы создавали кучу отчетов, на которые маркетеры не обращали внимания. Поэтому мы запустили процесс с нуля и применили более комплексный подход», – сказал Роузел. В EarthLink новая инициатива получила название TIAD: Today Is Another Day («Сегодня – новый день»). Суть ее была разъяснена сотрудникам всех подразделений. Программа позволила понять, каковы реальные потребности клиентов. Компания наняла талантливых аналитиков, чтобы решить проблему недостаточной квалификации, а кроме того, создала инструменты и инфраструктуру для поддержки аналитического маркетинга.
С помощью новых инструментов, позволявших изучать информационные массивы, аналитическая команда EarthLink смогла достичь хороших результатов. Маркетинг, направленный на удержание клиентов, позволил снизить отток более чем на 30 % по сравнению с контрольной группой. Анализ прибыльности показал, что использовавшиеся компанией каналы телемаркетинга до́роги и низкоэффективны, поэтому EarthLink переключилась на общение по электронной почте, что привело к значительному снижению затрат. Более того, значительно выросла доля отклика на предложения, поскольку компания направляла нужные предложения нужным клиентам в нужный момент. В совокупности операционные расходы на маркетинг снизились на 60 %, а его эффективность, соответственно, повысилась.
Эти победы привели к серьезным изменениям в организации маркетинга. В результате компания смогла от вопросов, основанных на данных («Какая доля потребителей от нас ушла?»), перейти к вопросам, связанным с сутью бизнеса: «Почему ушли клиенты этого типа?»; «Что мы можем сделать для снижения оттока?» и «Каким будет финансовый эффект от маркетинговых усилий?».
Крайне важным моментом для развития в EarthLink культуры маркетинга, основанного на данных, стало создание Совета по потребительскому опыту. Им управляет исполнительный комитет, состоящий из Роузела и других ведущих маркетеров и менеджеров по продукту, а также рабочей группы из 40 маркетеров компании. Совет устраивает ежемесячные совещания для обсуждения результатов предыдущих мероприятий, успешных примеров и новых моделей. «Работа Совета помогает нам регулярно проводить пилотные тесты, запускать кампании, измерять результаты и постоянно учиться чему-то новому», – сообщил Роузел.
Подводя итог, можно сказать, что дерево решений – отличный способ сегментировать клиентов и определять план дальнейших действий. Оно позволяет вам отвечать на массу вопросов, например: «Какие еще продукты и услуги покупают клиенты, приобретающие у нас данный продукт или услугу?»; «Какие события могут послужить для нас индикатором того, что потребитель купит новые продукты или услуги?»; «Какие события или действия клиента показывают, что он может уйти?». Затем начинаются расчеты. На основании данных, полученных от аналитиков, можно создать маркетинговые программы, нацеленные на конкретные группы клиентов с определенными характеристиками, или планы действий при наступлении определенных событий. Расчет моделей может производиться ежедневно, еженедельно, ежемесячно или в режиме реального времени при каждом взаимодействии клиента с вашей компанией (об этом я подробнее расскажу в следующем разделе).
Однако у большинства маркетеров нет навыков, необходимых для того, чтобы заниматься сбором данных и создавать запросы в программе типа SAS. Поэтому, скорее всего, придется нанять специалиста. Важно понять, в чем главные преимущества того или иного аналитического инструмента, как нужно интерпретировать данные и какие действия предпринимать. Сам процесс кажется сложным, но результаты просты и понятны. Я считаю, что экономический кризис – лучшее время для найма аналитика!
Сроки превыше всего: примеры маркетинга, основанного на событиях
Грамотное маркетинговое предложение, направленное нужным клиентам, может оказать на них серьезное воздействие. Модели предрасположенности, анализ потребительской корзины и дерево решений – инструменты, позволяющие провести гиперсегментацию и таргетинг. Однако главное начинается тогда, когда вы совмещаете аналитическое таргетирование и временну́ю привязку: клиент, у которого только что сломалась стиральная машина, будет куда более восприимчив (согласно измерениям уровня отклика и прибыльности) к предложениям о покупке нового аппарата, чем другой потенциальный клиент, только что купивший стиральную машину. Приведенные ниже кейсы наглядно покажут, как можно значительно улучшить свои результаты с помощью грамотно внедренного маркетинга, основанного на событиях.
Регрессионному анализу уделяется очень много внимания на программах MBA, посвященных методам принятия решений. Почему я о них умалчиваю? Суть регрессии состоит в выстраивании линейной модели для предсказания продаж – например, как производной функции от маркетинга и других входных параметров. Это отличный инструмент, если у вас есть много «чистых» данных и при этом вам несложно дать интерпретацию большому количеству переменных. Однако нехватка данных или их сильный разброс опасны для регрессии. Фактически в подобных случаях приходится отбрасывать значительную долю информации. В этом смысле деревья решений более гибкие, и их можно создавать и при недостаточности данных, и при большом их разбросе. Помимо прочего, регрессия предполагает наличие простой линейной модели, элементы которой не коррелируют между собой. Деревья же можно считать «непараметрическими». Данные четко не следуют математическому распределению, поэтому можно выделить степень взаимодействия между различными переменными и выбрать те из них, по которым лучше всего строить дерево, – то есть преодолеть две основные проблемы, присущие таким прогнозным моделям, как регрессия.
Читать дальшеИнтервал:
Закладка: