Марк Джеффри - Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый

Тут можно читать онлайн Марк Джеффри - Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый - бесплатно полную версию книги (целиком) без сокращений. Жанр: foreign-business, издательство Манн Иванов Фербер, год 2013. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый
  • Автор:
  • Жанр:
  • Издательство:
    Манн Иванов Фербер
  • Год:
    2013
  • Город:
    Москва
  • ISBN:
    978-5-91657-666-5
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Марк Джеффри - Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый краткое содержание

Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый - описание и краткое содержание, автор Марк Джеффри, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Автор этой книги – Марк Джеффри, старший преподаватель Kellogg School of Management, ведущей бизнес-школы США в области маркетинга.
На страницах книги он подробно объясняет, как измерить эффективность маркетинга, используя для этого всего лишь 15 показателей. На примерах из практики международных компаний он последовательно и четко описывает принципы работы с данными.
Прочитав эту книгу, вы узнаете: как использовать ключевые показатели для повышения эффективности маркетинга, с какими сложностями при анализе данных могут столкнуться маркетологи, а также как реальные компании применяют на практике описываемые методики.

Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый - читать онлайн бесплатно полную версию (весь текст целиком)

Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый - читать книгу онлайн бесплатно, автор Марк Джеффри
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вам, как и владельцу футбольного клуба, необходимо знать, что ворота установлены в правильном месте на поле, что команда решает грамотно поставленную задачу и у нее есть разумный план по перемещению мяча в нужном направлении и зарабатыванию очков. Следовательно, вы должны принимать во внимание масштаб решаемых проблем, а это даст возможность понять, нужна ли вам инфраструктура размером с домик для фермера или Эмпайр-стейт-билдинг. Как я уже говорил, технологии для маркетинга, основанного на данных, – слишком важный вопрос, чтобы оставлять его на откуп IT-отделу.

Сложность требований

Объем клиентской базы определяет размер хранилищ данных для маркетинга, основанного на данных. Второе важное измерение – степень сложности требований. На рис. 10.3 приведена методика, позволяющая понять, какая инфраструктура хранилища данных нужна (с учетом этих измерений). Как я уже говорил в предыдущем разделе, сложность требований к данным определяется тем, какие вопросы вы хотите задать и какие ответы получить.

Низкой степени сложности соответствует модель, приведенная на рис. 10.4. В данном случае нужно ответить на достаточно простые вопросы: какие продукты, где и когда продаются в ваших магазинах. Анализ проводится по одному набору фактов (данным о продажах) и четырем аналитическим измерениям: продукты, клиент, магазин и дата. Анализ в данном случае довольно прост, его можно провести за ночь. Если другая информация вам не нужна, то создание системы для небольшой клиентской базы («фермерского домика») обойдется недорого. В случае большой клиентской базы можно без особых проблем масштабировать инфраструктуру с помощью простой модели, изображенной на рис. 10.4. В данном случае, невзирая на большой объем данных, анализ достаточно прост. Вы работаете с единственной таблицей и вполне можете воспользоваться для этой цели обычными программами для витрин данных.

Рис. 10.3.Сложность требований

Рис 104Связи между данными для ретейла с низким уровнем сложности - фото 88

Рис. 10.4.Связи между данными для ретейла с низким уровнем сложности

Источник Ричард Уинтер wwwwintercorpcom Что это за оборудование Оно - фото 89

Источник: Ричард Уинтер, www.wintercorp.com

Что это за оборудование? Оно помогает создать недорогую информационную систему, способную выполнять одну-единственную функцию (подобно микроволновой печи на вашей кухне, которая только разогревает еду). Витрина данных для маркетинга требует сравнительно простой модели, наподобие приведенной на рис. 10.4; при этом она способна обрабатывать большие массивы данных. Этот пример с небольшой сложностью и большим объемом данных соответствует верхнему левому квадранту на рис. 10.3. В данном случае вместо домика для фермера вы строите большую, но простую структуру. Например, огромную парковку, для повышения емкости которой нужно добавить дополнительные места.

Сложность требований возрастает, когда компании для принятия решений нужны данные из различных источников, а их обработка носит нелинейный характер. На рис. 10.5 приведен пример модели расчета данных для CLTV в области ретейла. В данном случае имеется и масса сложностей с точки зрения аналитики, и различные, не связанные между собой наборы фактов, и сложная паутина взаимосвязей (что вполне нормально для сложных моделей).

Рис. 10.5.Сложные взаимосвязи, учитывающие пожизненную ценность клиента

Источник Ричард Уинтер wwwwintercorpcom С точки зрения масштабов - фото 90

Источник: Ричард Уинтер, www.wintercorp.com

С точки зрения масштабов инфраструктуры сложность требований может оказаться значительно более важной, чем количество клиентов. Нижний правый квадрант на рис. 10.3 соответствует сравнительно небольшому количеству клиентов, однако работа в нем связана с серьезными сложностями. В качестве примера приведу известную мне крупную производственную компанию из списка Fortune 500 с миллионом B2B-клиентов. Объем данных, связанных с этими клиентами, составлял всего 1 терабайт, то есть в случае низкой сложности требований инфраструктура могла бы представлять собой «фермерский дом».

Однако в компании работало около 10 тысяч продавцов, а ее философия состояла в том, чтобы сохранять контакт с менеджерами фирм-клиентов даже в случае их перехода на другую работу или в другую компанию.

У этого подхода есть важные преимущества: с его помощью продавцы могут со временем создать с клиентами глубокие и крепкие отношения. Но, с другой стороны, это обусловливает крайне сложную схему взаимодействий, поскольку продавцы управляют множеством различных продуктов и отношениями со многими клиентами.

В этом примере миллион клиентов создавал 1 терабайт прямых данных, а сложные и разносторонние отношения с ними – еще 10 терабайт производных. Иными словами, вследствие сложности отношений реальный объем данных составил 11 терабайт. Откуда же возникла эта сложность? Свою лепту внесли и перемещения внутри 1 миллиона корпоративных клиентов, и 10 тысяч продавцов, и более 100 тысяч записей, связанных с различными взаимодействиями, и более 10 тысяч продуктов, и т. д. Если вы спросите: «На какой объем продаж продукта Y в регионе X мы можем рассчитывать в этом квартале?» (вопросы, связанные с территорией, продуктом или клиентами, обычно считаются простыми) – то для этой компании ответ будет крайне сложным из-за большого количества перемещений клиентов.

Кроме того, сложность возрастает примерно в 10 раз, если компании требуется получать данные в режиме реального времени – например, проводить анализ CLTV «на лету» и использовать его в работе колл-центра, как в Королевском банке Канады (см. рис. 6.5). Верхний правый квадрант на рис. 10.3 представляет собой Эмпайр-стейт-билдинг в области инфраструктуры: большое количество клиентов и сложные требования. Такая инфраструктура для маркетинга, основанного на данных, обойдется в 50–250 миллионов долларов.

Возможно, вы уже запутались в битах, байтах, передаче данных, скоростях и многомиллионных инвестициях. Но именно они ключ к победе. Нужно заранее продумать модель работы с данными – точнее, необходима масштабная картина, основанная на том, какие ответы вы хотите получить. Именно требования бизнеса покажут вам, какого рода инфраструктуру следует создавать: фермерский домик или Эмпайр-стейт-билдинг. Однако не стоит строить небоскреб с нуля. Большинство известных мне успешных компаний начинали с малого: они понимали, как должна выглядеть итоговая модель, но создавали ее постепенно, одну таблицу за другой, применяя принцип 80/20 (сначала обрабатывали 20 % данных, которым соответствует 80 % ценности). Поэтому первый цикл модели может быть достаточно простым (наподобие приведенного на рис. 10.3). Достигнув успеха в малом, вы сможете вносить новые данные и усложнять модель (см. рис. 10.4).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Марк Джеффри читать все книги автора по порядку

Марк Джеффри - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый отзывы


Отзывы читателей о книге Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый, автор: Марк Джеффри. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x