Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть

Тут можно читать онлайн Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть - бесплатно полную версию книги (целиком) без сокращений. Жанр: foreign_edu, издательство Манн, Иванов и Фербер, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Квантовая вселенная. Как устроено то, что мы не можем увидеть
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-00100-080-8
  • Рейтинг:
    3.67/5. Голосов: 31
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть краткое содержание

Квантовая вселенная. Как устроено то, что мы не можем увидеть - описание и краткое содержание, автор Джефф Форшоу, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В этой книге авторитетные ученые Брайан Кокс и Джефф Форшоу знакомят читателей с квантовой механикой – фундаментальной моделью устройства мира. Они рассказывают, какие наблюдения привели физиков к квантовой теории, как она разрабатывалась и почему ученые, несмотря на всю ее странность, так в ней уверены.
Книга предназначена для всех, кому интересны квантовая физика и устройство Вселенной.
На русском языке публикуется впервые.

Квантовая вселенная. Как устроено то, что мы не можем увидеть - читать онлайн бесплатно полную версию (весь текст целиком)

Квантовая вселенная. Как устроено то, что мы не можем увидеть - читать книгу онлайн бесплатно, автор Джефф Форшоу
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы предполагаем, что, в отличие от водяной волны, электронная волна распространяется по всей Вселенной мгновенно. В техническом смысле можно сказать, что правило распространения частиц отличается от правила распространения водяной волны, хотя в обоих случаях распространение соответствует «волновому уравнению». Уравнение для водяных волн отличается от уравнения волн-частиц (это то самое знаменитое уравнение Шрёдингера, которое мы упомянули в прошлой главе), но оба они связаны с физикой волн. Различия – в деталях того, как объекты движутся с места на место. Кстати, если вы немного в курсе теории относительности Эйнштейна, то должны бы занервничать, услышав, что мы ведем речь о мгновенных перемещениях частицы по Вселенной, так как получается, словно что-то передвигается быстрее скорости света. На самом же деле идея того, что частица может быть здесь и через мгновение очень далеко отсюда, сама по себе вовсе не противоречит теориям Эйнштейна, потому что суть их в том, что быстрее скорости света не может перемещаться информация , а этому ограничению квантовая теория удовлетворяет. Как мы вскоре увидим, динамика прыжков частиц через Вселенную совершенно не такая, как при передаче информации, потому что мы не можем сказать заранее, куда же прыгнет частица. Кажется, что наша теория строится на полной анархии, и будет вполне естественно, если вы не поверите, что природа так себя может вести. Но далее в этой книге мы убедимся, что порядок нашей повседневной жизни действительно берет свое начало в этом фантастически абсурдном поведении.

Если вам непросто переварить подобную анархию – например, необходимость наполнить всю Вселенную маленькими циферблатами, чтобы описать движение единственной субатомной частицы от одного момента к другому, – то вы в хорошей компании. Снятие покровов с квантовой теории и попытки истолковать ее внутреннюю деятельность поставят в тупик кого угодно. Нильс Бор, например, известен такой фразой: «Те, кто не пришел в ужас при знакомстве с квантовой механикой, просто не могут ее понять». Ричард Фейнман предварил третий том «Фейнмановских лекций по физике» словами: «Думаю, могу с уверенностью сказать, что никто не понимает квантовую механику». К счастью, следовать ее законам гораздо проще, чем пытаться разобраться в ее сути. Способность тщательно рассматривать последствия определенного набора предположений, не слишком затрудняя себя их философским смыслом, – одно из самых важных умений современного физика. Это как раз в духе Гейзенберга: зададим первичные предположения и вычислим их последствия. Если мы получаем набор предсказаний, согласующихся с повседневными наблюдениями, теория признается жизнеспособной.

Многие проблемы слишком сложны, чтобы решить их одним мыслительным усилием, а глубокое понимание редко приходит в моменты, когда ученый кричит «эврика». Нужно убедиться, что вы действительно понимаете каждый мельчайший шаг, и после достаточного количества шагов должно появиться понимание общей картины. В противном случае мы поймем, что пошли по ложному пути и нужно начинать все с начала. Эти мельчайшие шаги, которые мы упомянули, не так сложны, но идея взять один циферблат и превратить его в бесконечное множество циферблатов, безусловно, сложна, особенно если представить себе, что их все надо нарисовать. Вечность, если перефразировать Вуди Аллена, – это очень долго, особенно ближе к концу. Советуем не паниковать и не сдаваться. В любом случае мы имеем дело лишь с кусочком вечности. Наша следующая задача – установить правило, которое будет описывать поведение этих циферблатов в определенное время после запуска частицы.

Это правило – основной закон квантовой теории, хотя впоследствии нам понадобится и второй закон, когда мы перейдем к рассмотрению возможности наличия во Вселенной больше одной частицы. Но начнем по порядку и сначала сосредоточимся на единственной на всю Вселенную частице: никто не обвинит нас в том, что мы хватаемся за все сразу. Итак, она существует в один миг времени – предположим, мы точно знаем, в какой именно, – и представлена единственным циферблатом. Наша конкретная задача – найти правило, описывающее, как будут выглядеть в любой момент все новые циферблаты, рассеянные по Вселенной.

Сначала мы сформулируем это правило, не подводя под него никаких оснований. К тому, почему правило звучит именно так, а не иначе, вернемся через несколько абзацев, но сейчас должны просто принять его на веру. Итак, вот оно: во время t в будущем стрелка циферблата, находящегося на расстоянии x от исходного циферблата, продвинется против часовой стрелки на величину, пропорциональную x ²; величина продвижения также пропорциональна массе частицы m и обратно пропорциональна времени t. В записи с помощью символов это значит, что нам нужно повернуть стрелку против хода часов на величину, пропорциональную mx ² / t . А если объяснять это словами, то быстрее двигаются по циферблату более массивные частицы, более далекие от исходной точки, а с течением времени ход становится медленнее. Существует алгоритм – или, если угодно, рецепт, – который точно описывает, как определить поведение определенного набора циферблатов в какой-то момент будущего. В каждой точке Вселенной мы рисуем новый циферблат, стрелка которого сдвинута на заданную правилом величину. Это подкрепляет наше предположение о том, что частица может (и так оно и есть) перепрыгивать из начального положения в любую другую точку Вселенной, порождая в процессе движения новые циферблаты.

Для простоты мы представляли только один исходный циферблат, но, конечно, в какой-то момент времени уже может существовать несколько циферблатов, и это отражает постулат, что частица не находится в каком-то определенном месте. Как разобраться с целой кучей циферблатов? Ответ таков: нужно делать то, что мы делали для одного циферблата, и повторять процесс для всех имеющихся циферблатов. Эту идею иллюстрирует рис. 4.2. Первичный набор циферблатов представлен маленькими кружками, а стрелки показывают, как частица перепрыгивает с места каждого первичного циферблата в точку X , «оставляя» там новый циферблат. Конечно, при этом каждый первичный циферблат порождает в точке X новый циферблат, и мы должны сложить их все вместе, чтобы создать окончательный циферблат для точки X . Размер этого окончательного циферблата дает вероятность впоследствии найти частицу в точке X .

.

Рис 42 Прыгающие циферблаты Окружности соответствуют местонахождению - фото 14

Рис. 4.2. Прыгающие циферблаты. Окружности соответствуют местонахождению частицы в определенный момент времени; нам необходимо каждой такой точке поставить в соответствие по циферблату. Чтобы вычислить вероятность обнаружения частицы в точке X , мы должны позволить частице прыгнуть туда из всех исходных мест ее пребывания. Несколько таких прыжков обозначено стрелками. Форма линий не имеет никакого значения и уж точно не означает, что частица движется с места нахождения циферблата в точку X по какой-то определенной траектории

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джефф Форшоу читать все книги автора по порядку

Джефф Форшоу - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квантовая вселенная. Как устроено то, что мы не можем увидеть отзывы


Отзывы читателей о книге Квантовая вселенная. Как устроено то, что мы не можем увидеть, автор: Джефф Форшоу. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x