Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть
- Название:Квантовая вселенная. Как устроено то, что мы не можем увидеть
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2016
- Город:Москва
- ISBN:978-5-00100-080-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть краткое содержание
Книга предназначена для всех, кому интересны квантовая физика и устройство Вселенной.
На русском языке публикуется впервые.
Квантовая вселенная. Как устроено то, что мы не можем увидеть - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Таким образом, для нашего прямоугольного ящика электронные волны будут иметь точно такую же форму, что и волны на гитарной струне: это будут волны-синусоиды с четко определенным набором разрешенных длин. Теперь можно двинуться вперед, призвав на помощь уравнение де Бройля из предыдущей главы и связав длину этих волн-синусоид с импульсом электрона: p = h / λ . В этом случае стоячие волны описывают электрон, которому разрешено иметь лишь определенные импульсы, заданные формулой p = nh / ( 2 L) , где все, что нам остается, – подставить разрешенные длины волны в уравнение де Бройля.
Получается, что импульс нашего электрона в прямоугольной яме квантуется. Это уже большое достижение. Однако надо быть осторожными: потенциал на рис. 6.3 – специфический случай, для других потенциалов стоячие волны обычно не синусоидальные. На рис. 6.5 показана фотография стоячих волн, созданных барабаном. Кожа барабана усыпана песком, который собирается в узлах стоячей волны. Так как кайма вибрирующего барабана круглая, а не прямоугольная, стоячие волны уже не будут синусоидами [24]. Это значит, что в более реалистичной ситуации, когда электрон пойман протоном, стоячие волны тоже не будут синусоидами. В свою очередь, это подразумевает, что связь между длиной волны и импульсом утеряна. И как в этом случае интерпретировать стоячие волны? Что если у пойманных частиц квантуется не импульс?

Рис. 6.5. Вибрирующий барабан покрыт песком. Песок собирается в узлах стоячих волн
Мы можем найти ответ, если заметим, что в прямоугольной потенциальной яме квантуется не только импульс электрона, но и его энергия. Это простое наблюдение, кажется, не содержит никакой новой важной информации, поскольку энергия и импульс прямо связаны друг с другом, а именно энергия E = p ² / 2 m , где p – импульс удерживаемого электрона, а m – его масса [25]. Но это наблюдение не такое уж бесполезное, как можно подумать, потому что для потенциалов не столь простых, как прямоугольная яма, каждая стоячая волна всегда соотносится с частицей определенной энергии.
Важное различие между энергией и импульсом появляется потому, что уравнение E = p ² / 2 m верно, только если потенциал одинаков по всей области вероятного пребывания частицы и позволяет ей двигаться свободно, как по мраморной столешнице или, что больше относится к делу, как электрону в прямоугольной яме. В общем случае энергия частицы не будет сводиться к E = p ² / 2 m ; это будет сумма кинетической и потенциальной энергий частицы. Так разрушается прямая связь между энергией частицы и ее импульсом.
Можно еще раз проиллюстрировать это положение с помощью мяча в долине с рис. 6.4. Начнем с мяча, который счастливо покоится на дне. С ним ничего не происходит [26]. Чтобы заставить мяч катиться вверх по склону, его нужно ударить, то есть добавить ему энергии. В мгновение, следующее за ударом, вся его энергия будет кинетической. По мере подъема мяча по склону он будет замедляться, пока на какой-то высоте не остановится, после чего будет снова падать. В момент остановки он не будет обладать кинетической энергией, но ведь энергия не исчезла по волшебству. На самом деле вся кинетическая энергия превратилась в потенциальную, которая равняется mgh , где g – ускорение свободного падения у поверхности Земли, а h – высота мяча над земной поверхностью. Когда мяч начинает падать, эта накопленная потенциальная энергия при наборе скорости постепенно снова превращается в кинетическую. Итак, пока мяч перелетает с одного конца долины в другой, общая энергия остается постоянной, но периодически перетекает из кинетической в потенциальную. Разумеется, импульс мяча постоянно меняется, но суммарная энергия остается неизменной (предположим, что трения, замедляющего скорость мяча, не существует. Если бы мы включили его в нашу картину, общая энергия тоже осталась бы неизменной, но нужно было бы добавить в качестве ее составляющей энергию, идущую на трение).
Сейчас мы попытаемся исследовать связь между стоячими волнами и частицами определенной энергии иным способом, не обращаясь к особому случаю прямоугольной ямы. Воспользуемся на сей раз маленькими квантовыми циферблатами.
В первую очередь заметьте: если электрон в какой-то момент времени описывается стоячей волной, то он будет описываться той же стоячей волной и в любой следующий момент. Под «той же» мы подразумеваем неизменность формы волны, как в случае со стоячей водяной волной на рис. 6.1. Мы, конечно, не имеем в виду, что волна вообще не меняется: изменяется ее высота, но не положение пиков и узлов.
Это позволяет нам установить, как должно выглядеть описание стоячей волны в терминах квантовых циферблатов, и оно показано на рис. 6.6 для случая стоячей волны основного тона. Размеры циферблатов вдоль волны отражают положение пиков и узлов, а все стрелки часов движутся с одинаковой скоростью. Надеемся, вы понимаете, почему мы изобразили именно такую группу циферблатов. Узлы должны всегда быть узлами, а пики – пиками, и они все должны оставаться на одном месте. Это значит, что циферблаты вблизи узлов должны всегда быть очень маленькими, а циферблаты, соответствующие пикам, должны всегда иметь самые длинные стрелки. Таким образом, единственное, что мы вольны делать, – так это поместить циферблаты по своему усмотрению и заставить их стрелки вращаться синхронно. Если следовать методологии предыдущих глав, мы должны были бы начать с конфигурации циферблатов, показанной в верхнем ряду рис. 6.6, и использовать правила уменьшения и поворота стрелок, чтобы получить три нижних ряда позже. Это упражнение со скачущими циферблатами – слишком сильный скачок прочь от темы книги, но его можно выполнить, и тут есть неплохой поворот [27], поскольку, чтобы выполнить упражнение правильно, нужно учесть тот факт, что частица «отскакивает от стенок ящика», прежде чем двинуться в своем направлении. Кстати, поскольку циферблаты в центре больше, мы можем непосредственно заключить, что электрон, который описывается этим набором циферблатов, скорее окажется в центре ящика, чем по краям.

Рис. 6.6. Четыре снимка стоячей волны в последовательные моменты времени. Стрелки на рисунке соответствуют стрелкам часов, а пунктирная линия – проекции «двенадцатичасового» направления. Все стрелки движутся в унисон
Итак, мы выяснили, что удерживаемый электрон описывается набором циферблатов, все стрелки которых вращаются с одинаковой скоростью. Физики, впрочем, обычно так не говорят, а уж музыканты и подавно; те и другие говорят, что стоячие волны – это волны определенной частоты [28]. Высокочастотные волны соответствуют часам, стрелки которых вращаются быстрее, чем стрелки часов низкочастотных волн. Это понятно, потому что если стрелка часов вращается быстрее, то уменьшается время падения волны с максимума до минимума и обратного подъема (представленного полным оборотом стрелки). Если говорить о водяных волнах, то высокочастотные стоячие волны поднимаются и опускаются быстрее, чем низкочастотные. В музыке говорят, что среднее до имеет частоту 262 Гц, то есть гитарная струна ежесекундно колеблется 262 раза. Нота ля выше среднего до, она имеет частоту 440 Гц, то есть колеблется быстрее (это общепринятый стандарт настройки в большинстве оркестров и для музыкальных инструментов во всем мире). Как мы уже отметили, однако, лишь для чистых синусоид верно, что волны определенной частоты имеют и определенную длину волны. В общем же случае частота – фундаментальная величина, которая описывает стоячие волны, но это определение, кажется, ничего не определяет. Вот вопрос на миллион долларов: что такое электрон определенной частоты? Напомним, что состояния электрона нам интересны, потому что они квантованы, и еще потому, что электрон в одном подобном состоянии остается таким все время (пока нечто не войдет в область потенциала, воздействуя на этот электрон).
Читать дальшеИнтервал:
Закладка: