Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть

Тут можно читать онлайн Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть - бесплатно полную версию книги (целиком) без сокращений. Жанр: foreign_edu, издательство Манн, Иванов и Фербер, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Квантовая вселенная. Как устроено то, что мы не можем увидеть
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-00100-080-8
  • Рейтинг:
    3.67/5. Голосов: 31
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть краткое содержание

Квантовая вселенная. Как устроено то, что мы не можем увидеть - описание и краткое содержание, автор Джефф Форшоу, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В этой книге авторитетные ученые Брайан Кокс и Джефф Форшоу знакомят читателей с квантовой механикой – фундаментальной моделью устройства мира. Они рассказывают, какие наблюдения привели физиков к квантовой теории, как она разрабатывалась и почему ученые, несмотря на всю ее странность, так в ней уверены.
Книга предназначена для всех, кому интересны квантовая физика и устройство Вселенной.
На русском языке публикуется впервые.

Квантовая вселенная. Как устроено то, что мы не можем увидеть - читать онлайн бесплатно полную версию (весь текст целиком)

Квантовая вселенная. Как устроено то, что мы не можем увидеть - читать книгу онлайн бесплатно, автор Джефф Форшоу
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 105 Атом водорода Бете совершенно справедливо включил в расчеты важные - фото 68

Рис. 10.5. Атом водорода

Бете совершенно справедливо включил в расчеты важные результаты «однопетлевых» диаграмм, подобных изображенным на рисунке, и обнаружил, что они оказывают некоторое влияние на сдвиг энергетических уровней, а следовательно, и на видимый спектр. Его результаты соответствовали измерениям Лэмба. Иными словами, квантовая электродинамика заставляет представить атом водорода в виде невероятной какофонии субатомных частиц, порождающихся и прекращающих существование. Лэмбовский сдвиг стал первой непосредственной встречей человечества с этими эфирными квантовыми флуктуациями.

Прошло немного времени – и эстафетную палочку перехватили двое других участников встречи в Шелтер-Айленде: Ричард Фейнман и Джулиан Швингер. Через пару лет квантовая электродинамика уже развилась в ту теорию, которую мы знаем сейчас, – прототип квантовой теории поля и образец для тех теорий, которым еще предстояло появиться на свет и которые описывали сильное и слабое взаимодействия. За свои заслуги Фейнман, Швингер и японский физик Синъитиро Томонага в 1965 году получили Нобелевскую премию «За фундаментальные работы по квантовой электродинамике, имевшие глубокие последствия для физики элементарных частиц». К этим глубоким последствиям мы и переходим.

11. Пустое пространство не такое уж пустое

Не все в мире берет начало во взаимодействии частиц с электрическим зарядом. Квантовая электродинамика не объясняет «сильных ядерных» процессов, которые сцепляют кварки внутри протонов и нейтронов, и «слабых ядерных» процессов, благодаря которым горит наше Солнце.

Нельзя писать книгу о квантовой теории природы и оставить за ее рамками половину фундаментальных сил, так что в этой главе мы заполним пробел, прежде чем погрузиться непосредственно в пустое пространство. Окажется, что вакуум – это очень интересное место, полное возможностей и препятствий на пути частиц.

В первую очередь нужно подчеркнуть, что слабое и сильное ядерное взаимодействия описываются при помощи точно такого же подхода к квантовой теории поля, о котором шла речь при разговоре о квантовой электродинамике. Именно в этом смысле можно говорить о серьезных последствиях работы Фейнмана, Швингера и Томонаги. В целом теория этих трех взаимодействий получила весьма нейтральное название Стандартной модели физики частиц . Когда мы пишем эти строки, Стандартная модель проходит тестирование на разрыв в самой большой и самой хитроумной машине в истории человечества – Большом адронном коллайдере ЦЕРН (он же БАК). «На разрыв» – удачное выражение, потому что в отсутствие чего-то до сих пор не открытого Стандартная модель прекращает делать осмысленные предсказания при энергиях, которыми сопровождаются в БАК столкновения протонов на скорости, почти равной скорости света. На языке этой книги можно сказать, что квантовые правила начинают порождать циферблаты со стрелками длиной более 1, а это значит, что определенные процессы, связанные со слабым квантовым взаимодействием, начинают предсказываться с вероятностью более 100 %. Это очевидный нонсенс, и предполагается, что БАК должен найти нечто новое. Проблема в том, чтобы идентифицировать это новое в сотнях миллионов столкновений протонов, которые каждую секунду происходят на глубине 100 м под Юрскими горами.

Стандартная модель действительно содержит лекарство от болезни повышенных вероятностей, и это лекарство известно под названием хиггсовского механизма. Если оно верно, то БАК должен обнаружить еще одну природную частицу – бозон Хиггса, после чего наши взгляды на содержимое пустого пространства должны кардинально измениться. В этой главе мы обратимся к хиггсовскому механизму чуть позже, но сначала нужно дать краткое описание пока победоносной, но уже трещащей по швам Стандартной модели.

Стандартная модель физики частиц

На рис. 11.1 мы перечислили все известные частицы. Это строительные кирпичики Вселенной, по крайней мере такова точка зрения на момент написания этой книги, но мы ожидаем обнаружить еще несколько – возможно, мы увидим бозон Хиггса или новую частицу, связанную с существующей в большом количестве загадочной темной материей, которая, вероятно, необходима для описания всей Вселенной. Или, возможно, нас ожидают суперсимметричные частицы, предсказанные теорией струн, или возбуждения Калуцы – Клейна, характерные для дополнительных измерений пространства, или техникварки, или лептокварки, или… теоретических рассуждений множество, и обязанность тех, кто проводит эксперименты на БАК, в том, чтобы сузить поле поиска, исключить неверные теории и указать путь вперед.

Рис 111 Частицы природы Все что можно увидеть и потрогать любая - фото 69

Рис. 11.1. Частицы природы

Все, что можно увидеть и потрогать; любая неодушевленная машина, любое живое существо, любая скала, любой человек на планете Земля, любая планета и любая звезда в каждой из 350 миллиардов галактик в наблюдаемой Вселенной состоит из частиц из первого столбца. Вы сами состоите из сочетания всего трех частиц – верхнего и нижнего кварков и электрона. Кварки составляют атомное ядро, а электроны, как мы уже видели, отвечают за химические процессы. Оставшаяся частица из первого столбца – нейтрино – возможно, знакома вам меньше, но Солнце пронзает каждый квадратный сантиметр вашего тела 60 миллиардами таких частиц ежесекундно. Они в основном без задержки проходят через вас и всю Землю – потому-то вы никогда их не замечали и не ощущали их присутствия. Но они, как мы вскоре увидим, играют ключевую роль в процессах, которые дают энергию Солнца, а следовательно, делают возможной саму нашу жизнь.

Эти четыре частицы образуют так называемое первое поколение материи – вместе с четырьмя фундаментальными природными взаимодействиями это все, что, судя по всему, нужно для создания Вселенной. Однако по причинам, которые пока до конца не понятны, природа предпочла снабдить нас еще двумя поколениями – клонами первого, только эти частицы более массивны. Они представлены во втором и третьем столбцах рис. 11.1. Топ-кварк в особенности превосходит массой другие фундаментальные частицы. Он был открыт на ускорителе в Национальной ускорительной лаборатории им. Энрико Ферми под Чикаго в 1995 году, и его масса, согласно измерениям, более чем в 180 раз превосходит массу протона. Почему топ-кварк оказался таким монстром, притом что он столь же похож на точку, как и электрон, пока загадка. Хотя все эти дополнительные поколения материи не играют непосредственной роли в обычных делах Вселенной, они, вероятно, были ключевыми игроками сразу после Большого взрыва… Но это совсем другая история.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джефф Форшоу читать все книги автора по порядку

Джефф Форшоу - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квантовая вселенная. Как устроено то, что мы не можем увидеть отзывы


Отзывы читателей о книге Квантовая вселенная. Как устроено то, что мы не можем увидеть, автор: Джефф Форшоу. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x