Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса

Тут можно читать онлайн Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - бесплатно полную версию книги (целиком) без сокращений. Жанр: foreign_edu, издательство Литагент АСТ, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса
  • Автор:
  • Жанр:
  • Издательство:
    Литагент АСТ
  • Год:
    2016
  • Город:
    М.
  • ISBN:
    978-5-17-095136-9
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса краткое содержание

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - описание и краткое содержание, автор Марио Ливио, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Альберт Эйнштейн писал: «Как так получилось, что математика, продукт человеческой мысли, независимый от опыта, так прекрасно соотносится с объектами физической реальности?» Наука предлагает абстрактную математическую модель, а спустя какое-то время (иногда десятилетия) выясняется, что эта модель существует в реальности! Так кто же придумал математику – мы сами или Вселенная? Может быть, математика – язык, на котором говорит с нами мироздание?
Блестящий физик и остроумный писатель Марио Ливио рассказывает о математических идеях от Пифагора до наших дней и показывает, как абстрактные формулы и умозаключения помогли нам описать Вселенную и ее законы.
Книга адресована всем любознательным читателям независимо от возраста и образования.

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - читать онлайн бесплатно полную версию (весь текст целиком)

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - читать книгу онлайн бесплатно, автор Марио Ливио
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Иначе говоря, хотя Юм, как и все эмпирики, полагал, что любое знание коренится в наблюдении, геометрия и ее «истины» по-прежнему занимали в его представлении привилегированное положение.

Величайший немецкий философ Иммануил Кант (1724–1804) не во всем был согласен с Юмом, однако тоже превозносил евклидову геометрию, приписывая ей и абсолютную точность, и бесспорную достоверность. В своем знаменитом труде «Критика чистого разума» Кант сделал попытку в некотором смысле обратить отношения между сознанием и физическим миром. Кант отошел от представления о том, что физическая реальность накладывает отпечаток на сознание, остающееся, в сущности, пассивным, Кант наделил сознание активной функцией «конструирования» или «переработки» воспринимаемой Вселенной. Он направил внимание вовнутрь и задался вопросом не о том, что мы можем познать, но о том, как именно мы можем познать то, что можем познать [99] По Канту, одна из основных задач философии – объяснить возможность синтетического априорного знания математических понятий. Среди прочих работ на эту тему хотелось бы отметить Höffe 1994 и Kuehn 2001. Хороший обзор представлений о применении математики можно найти в Trudeau 1987. . Он объяснил, что хотя наши глаза регистрируют частички света, эти частички не формируют образ в нашем сознании, пока мозг не переработает и не упорядочит информацию. Ключевая роль в этом процессе переработки приписывалась интуитивному или синтетическому априорному представлению о пространстве, которое, в свою очередь, как полагал Кант, основано на евклидовой геометрии. Кант был убежден, что евклидова геометрия – это единственный путь к переработке и концептуализации пространства, и это интуитивное универсальное знание о пространстве и лежит в основе нашего восприятия мира природы. Вот как об этом пишет сам Кант (Kant 1781).

Пространство не есть эмпирическое понятие, выводимое из внешнего опыта… Пространство есть необходимое априорное представление, лежащее в основе всех внешних созерцаний… На этой априорной необходимости основывается аподиктическая достоверность всех геометрических основоположений и возможность их априорных построений. Если бы это представление о пространстве было a posteriori приобретенным понятием, почерпнутым из общего внешнего опыта, то первые основоположения математического определения были бы только восприятием. Следовательно, на них была бы печать случайности, свойственной восприятию, и суждение, что между двумя точками возможна лишь одна прямая линия, не было бы необходимым; всякий раз этому учил бы нас опыт ( пер. Н. Лосского ).

Проще говоря, по Канту, если мы воспринимаем какой-то предмет, этот предмет непременно пространственный и евклидовский.

Идеи Юма и Канта выдвинули на первый план два разных, но одинаково важных аспекта, традиционно приписываемых евклидовой геометрии. Первое – утверждение, что евклидова геометрия дает единственно возможное точное описание физического пространства. Второе – отождествление евклидовой геометрии с жесткой, не подлежащей сомнению и непогрешимой дедуктивной структурой. В совокупности эти два предполагаемых качества предоставляли математикам, физикам и философам неоспоримые доказательства, что существуют незыблемые и конкретные истины, описывающие вселенную. До XIX века подобные утверждения воспринимались как данность. Но верны ли они на самом деле?

Основы евклидовой геометрии заложил греческий математик Евклид Александрийский примерно в 300 году до нашей эры. Он создал монументальный тринадцатитомный труд под названием «Начала», где попытался воздвигнуть геометрию на хорошо определенной логической основе. Начал он с девяти аксиом, которые, как предполагалось, несомненно истинны, и четырех постулатов, а затем на основе этих аксиом и постулатов исключительно логическими рассуждениями доказал огромное количество теорем.

Первые четыре постулата Евклида крайне просты и на удивление лаконичны [100] Относительно щадящее введение в евклидову и неевклидовы геометрии см. у Greenberg 1974. . Первый из них, к примеру, гласит, что «от всякой точки до всякой точки можно провести прямую линию» ( здесь и далее цитаты из «Начал» Евклида даны в пер. Д. Мордухай-Болтовского ). Четвертый – что «все прямые углы равны между собой». А вот пятый постулат – «постулат о параллельности» – сформулирован уже сложнее и значительно менее очевиден: «Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то эти две прямые, продолженные неограниченно, встретятся с той стороны, где углы меньше двух прямых». На рис. 39 приведен чертеж, иллюстрирующий этот постулат. В истинности этого утверждения никто не сомневался, однако ему явно не хватает краткости и убедительности остальных постулатов. Все указывает на то, что пятый постулат не очень нравился и самому Евклиду: он не прибегает к нему при доказательстве первых двадцати восьми теорем в «Началах» [101] Теоремы, доказанные без пятого постулата, анализируются в Trudeau 1987. . Эквивалентный вариант «пятого постулата», который чаще всего цитируется в наши дни, впервые появился в комментариях греческого математика Прокла в V веке, однако широко известен как «аксиома Плейфэра» в честь шотландского математика Джона Плейфэра (1748–1819). Он гласит: «если дана линия и точка, лежащая вне ее, через эту точку возможно провести одну и только одну линию, параллельную данной» (см. рис. 40). Два варианта постулата эквивалентны в том смысле, что аксиома Плейфэра (вместе с другими аксиомами) требует первоначального пятого постулата Евклида или наоборот.

С течением веков недовольство пятым постулатом росло, и это привело к целому ряду неудачных попыток все-таки доказать его на основании остальных постулатов и аксиом или заменить его каким-то более очевидным постулатом. Когда эти попытки провалились, другие геометры попытались ответить на интересный вопрос из серии «А что, если»: а что, если пятый постулат на самом деле неверен? Размышления в этом направлении порождали неприятные сомнения в том, так ли уж самоочевидны евклидовы аксиомы – может быть, они просто основаны на повседневном опыте? [102] Прекрасное описание всех попыток, которые в конце концов привели к разработке неевклидовой геометрии, можно найти в Bonola 1955. А окончательный – и крайне неожиданный – вердикт был вынесен в XIX веке: можно создать новые виды геометрий, если произвольно выбрать постулат, отличающийся от пятого постулата Евклида. Более того, эти «неевклидовы» геометрии в принципе способны описывать физическое пространство с той же точностью, что и евклидова!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Марио Ливио читать все книги автора по порядку

Марио Ливио - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса отзывы


Отзывы читателей о книге Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса, автор: Марио Ливио. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x