Марио Ливио - От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной
- Название:От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной
- Автор:
- Жанр:
- Издательство:Array Литагент «АСТ»
- Год:2015
- Город:Москва
- ISBN:978-5-17-088983-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марио Ливио - От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной краткое содержание
От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Надо было разозлить вас раньше
Статья называлась «Конфигурации полипептидных цепей в кристаллических белках» [187], а написали ее три светила: Лоренс Брэгг, нобелевский лауреат по физике 1915 года, и два молекулярных биолога, которым еще предстояло получить Нобелевскую премию по химии в 1962 году – Джон Кендрю и Макс Перуц, все трое – из лаборатории Кавендиша в Кембридже. В то время эта знаменитая лаборатория была всемирным центром рентгеновской кристаллографии. В целом рентгеновская кристаллография была детищем Брэггов: Лоренс Брэгг и его отец сэр Генри Брэгг вместе трудились над математической моделью этого физического феномена и разработали экспериментальную методику.
Идея рентгеновской кристаллографии проста до гениальности [188]. Еще с начала XIX века физики понимали, что если направить видимый свет на решетку с равным расстоянием между прутьями, а позади решетки поставить экран, то свет, пройдя сквозь нее, формирует на экране дифракционный узор из темных и светлых пятен. Светлые пятна получались в тех местах, где световые волны из разных щелей в решетке усиливали друг друга, а темные – там, где различные волны подвергались деструктивной интерференции (там, где пик одной волны накладывался на минимум другой). Однако, кроме того, физики знали, что для формирования дифракционного узора расстояния между щелями должно быть того же порядка, что и длина волны светового излучения (расстояние между двумя соседними пиками волны). Хотя создать подобные решетки с тончайшими прорезями для видимого света было относительно легко, сделать их для рентгеновских лучей оказалось невозможно: типичная длина волны для рентгеновского излучения в тысячи раз короче длин волн видимой части спектра. Первым, кто понял, что решетками для установок, на которых проводятся эксперименты по дифракции рентгеновского излучения, могут послужить встречающиеся в природе периодические кристаллы, был немецкий физик Макс фон Лауэ. Лауэ обнаружил, что межатомные расстояния в кристаллах были в точности того же порядка, что и предполагаемые длины волн рентгеновского излучения. Лоренс Брэгг пошел по стопам Лауэ и сформулировал математический закон, который описывает дифракцию рентгеновских лучей на кристаллической структуре. Как ни поразительно, этот важнейший результат он получил еще на первом курсе магистратуры в Кембридже. Семейная команда, состоящая из Генри и Лоуренса Брэггов, построила затем рентгеновский спектрометр, который позволил им проанализировать структуру самых разных кристаллов. Кстати, Лоуренс Брэгг – самый молодой в истории нобелевский лауреат: когда он получил премию, ему было всего 25 лет!
Учитывая все эти регалии, можно представить себе, что когда Полинг увидел название статьи, которую написали Брэгг, Кендрю и Перуц, сердце у него екнуло. И из первых двух абзацев вполне можно было сделать вывод, что команда Брэгга обошла его у самого финиша: «Белки состоят из длинных цепочек аминокислотных остатков… В данной статье сделана попытка собрать как можно больше информации о природе цепочки по данным рентгеновских исследований кристаллических белков и изучить возможные типы цепочек, которые соответствуют имеющимся данным» [189]. Полинг быстро прочитал все 36 страниц статьи и с облегчением обнаружил, что хотя ученые из лаборатории Кэвендиша описали около 20 структур, альфа-спирали среди них не было. Более того, авторы статьи пришли к выводу, что ни одна из этих структур не подходит для альфа-кератина. Полинг с радостью согласился с этим выводом – в особенности потому, что считал, что Брэгг с коллегами не наложили на свои конфигурации самое важное ограничение, зато ввели условие, которое Полингу казалось совершенно ненужным. С одной стороны, ни в одной из моделей Брэгга не учитывалась плоскостная структура пептидной группы, а Полинг был полностью убежден, что его предположение верно. С другой – ученые из лаборатории Кавендиша, судя по всему, исходили из предположения, что на каждый полный виток их спиральных структур должно было приходиться целое число аминокислот, в то время как альфа-спираль Полинга, вопреки традициям, предполагала около 3,6 аминокислот на виток, и ничего дурного в этом Полинг не видел. Кроме того, Брэгг основывался на рентгеновской кристаллографии и считал догмой наблюдаемое расстояние между витками в 5,1 ангстрем, на которое указывали данные Астбери. Впоследствии Перуц вспоминал, что перед началом работы группы Брэгг вбивал в ручку метлы гвозди, изображавшие аминокислотные остатки, по спирали с расстоянием между витками по оси в 5,1 сантиметра [190].
Полинг от природы был страстный спорщик и не терпел конкурентов. Хотя ему было приятно, что кембриджские коллеги упустили несколько важных соображений, появление статьи Брэгга побудило его к немедленным действиям – так он боялся, что его могут опередить. В октябре 1950 года они с Кори опубликовали в «Journal of the American Chemical Society» короткую заметку с описанием альфа-спирали и гамма-спирали [191]. Примерно в это же время другая британская исследовательская группа из исследовательской лаборатории компании «Куртлодз» тоже получила многообещающие результаты. Клемент Бэмфорд, Артур Эллиот и их коллеги сумели получить волокна из синтетических полипептидов. К огромной радости Полинга, рентгеновские снимки дифракции на этих волокнах ясно показали, что расстояние между витками по оси составляет не 5,1, а 5,4 ангстрем, что соответствовало результатам Полинга. Полинг заподозрил, что эта характеристика рентгеновских снимков волоса, вероятно, была всего лишь дефектом снимков, вызванным частичным наложением отраженных изображений, а вовсе не важной характеристикой структуры. Вскоре подозрение переросло в уверенность, и Полинг, Кори и Брэнсон опубликовали статью [192], где подробно описывали альфа– и гамма-спирали. По стечению обстоятельств эта важная статья была послана в журнал в точности в день пятидесятилетия Полинга.
Кстати, химик Джек Дуниц рассказывал мне забавный случай, связанный с самим словом «спираль» – « helix ». Джек Дуниц, который в то время работал у Полинга на временную должность научного сотрудника с ученой степенью, вспоминает, что в 1950 году Полинг называл структуру альфа-кератина другим, синонимичным словом – « spiral ». Даже в краткой заметке Полинга и Кори в « Journal of the American Chemical Society » говорилось исключительно о « spirals ». Дуниц вспоминает, что как-то раз заметил в разговоре с Полингом, что раньше ему казалось, будто слово « spiral » [193]может означать только двумерную, плоскостную спираль, а объемную, трехмерную надо называть « helix ». Полинг ответил, что слово « spiral » может означать и двумерную, и трехмерную спираль, однако, подумав, добавил, что слово « helix » нравится ему больше. В результате этого разговора пространная статья Полинга, Кори и Брэнсона, опубликованная в феврале 1951 года, вообще не содержала слова « spiral », а в ее названии «Структура белков. Две спиральные конфигурации полипептидной цепочки с водородными связями» употреблялось слово « helical ». К этому времени Полинг был настолько убежден в верности своей модели, что они с Кори вслед за статьей об альфа-спирали выпустили целый фейерверк статей о структуре полипептидных цепочек.
Читать дальшеИнтервал:
Закладка: