Джон Браун - Семь элементов, которые изменили мир
- Название:Семь элементов, которые изменили мир
- Автор:
- Жанр:
- Издательство:Array Литагент «Аттикус»
- Год:2014
- Город:М.
- ISBN:978-5-389-08888-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Браун - Семь элементов, которые изменили мир краткое содержание
Эта книга о том, как мы, люди, меняем планету. Как, используя во благо, а временами во вред богатый арсенал химических элементов, неудержимо стремимся к новым пределам: знаний, богатства, власти и влияния. Как создаем новые отрасли промышленности и города, как разрушаем и истребляем то, чем пользовались до нас десятки поколений.
Сможет ли сегодня человечество направить свои силы и энергию на благо себе и планете, воздержаться от необдуманных действий, которых и так совершено уже немало? На этот вопрос стремится найти ответ Джон Браун, английский бизнесмен, инженер и историк, на протяжении 12 лет возглавлявший одну из крупнейших нефтедобывающих корпораций мира – British Petroleum.
Семь элементов, которые изменили мир - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
36. Ленточное стекло стало производиться за несколько десятилетий до изобретения Пилкингтона. Pilkington Glass разработала этот процесс в начале XX в. совместно с Генри Фордом, стремившимся снизить себестоимость своих автомобилей. Однако ленточное стекло все равно требовало шлифовки и полировки.
37. Небоскреб Shard («Осколок»). Открытие его в Лондоне (июль 2012 г.) сопровождалось грандиозным лазерным шоу.
38. The Music Lesson, Hiroshi Sugimoto (1999), из коллекции автора.
39. Miller Jonathan. On Reflection: An Investigation of Artists’ Use of Reflection Throughout the History of Art. New Haven, Yale University Press, 1998, p. 124.
40. Republic (X, 596) in Melchior-Bonnet, The Mirror, p. 104.
41. Стеклянные линзы, названные так по причине сходства с зернами чечевицы (по латыни lenses), продавались изготовителями очков с середины XIV в., но телескоп был изобретен только 100 лет спустя. В октябре 1608 г. Генеральные штаты Гааги получили от Ханса Леппрсхея заявку на патент на инструмент, «позволяющий видеть удаленные предметы так, как если бы они находились вблизи». См.: Patent Application of Hans Lippershey, 2 October 1608. The Hague, Algemeen Rijksarchief, MSS «Staten-Generaal», Vol. 33, f. 178v.
42. Hoskin Michael. The Cambridge Concise History of Astronomy. Cambridge: Cambridge University Press, 1999, p. 112.
43. Nicolaus Copernicus, De revolutionibus, 1543. Наряду с наблюдениями Галилея точные астрономические наблюдения Тихо Браге, установившего новые стандарты в астрономической науке XVI в., и новые законы движения планет, сформулированные Иоганном Кеплером, имели решающее значение для разработки гелиоцентрической модели Вселенной.
44. Сформулированный Галилеем принцип инерции давал объяснение этой «проблеме». Тело, движущееся с постоянной скоростью, будет продолжать двигаться с этой скоростью до тех пор, пока не испытает внешнего воздействия. Так как Земля и все находящееся на ней движется с постоянной скоростью, то воздействия какой-либо силы не ощущается.
45. Hoskin, The Cambridge Concise History of Astronomy, p. 122.
46. Стекло отклоняет или преломляет лучи разного цвета в разной степени. Вот почему стеклянная призма Ньютона давала на стене изображение радуги. Чтобы изображение было получено близко к линзе, свет должен преломляться сильнее с использованием более искривленной, а значит, и толстой линзы. Но она также увеличивает расхождение преломляемых лучей разного цвета (разной длины волны), в результате чего получается размытое изображение. Использование более тонких и менее искривленных линз дает более четкое изображение, но увеличение фокусного расстояния линз означает необходимость увеличения длины трубы телескопа.
47. Гершель понял, что телескопы собирают свет «пропорционально своим апертурам, так что телескоп с увеличенной вдвое апертурой будет проникать в пространство вдвое дальше». Яркость звезды быстро снижается по мере увеличения расстояния от Земли, и поэтому зеркало, собирающее больше света, позволяет увидеть более удаленные звезды. Pendergrast, Mirror, Mirror, location 2024/5102.
48. Pendergrast, Mirror, Mirror, location 2024/5102.
49. Многие телескопы Гершель изготовил не из посеребренного стекла, а из зеркальной бронзы – хрупкого сплава, состоящего преимущественно из меди и олова.
50. The Great Art of Light and Shadow (1646), в Frank Kryza, The Power of Light. New York, McGraw-Hill, 2003, p. 36.
51. Многие историки уверены, что это не более чем легенда. Проводились даже экспериментальные попытки повторить процесс, но даже при ярком сицилийском солнце бронзовые щиты в качестве отражателей вряд ли могли причинить серьезный вред деревянным вражеским кораблям.
52. Он использовал то же зеркало, чтобы плавить золотые дукаты. Biringuccio, Pirotechnia, p. 387.
53. Проект Леонардо предполагал использование мозаики из посеребренных кусков стекла, уложенных на вогнутое дно котлована. В примечании он писал: «С помощью этого устройства можно передавать тепло любому резервуару для нагревания воды на красильной фабрике. И благодаря такому способу нагревания в резервуаре всегда будет горячая вода». Kryza, The Power of Light, p. 57. См. также рисунки в альбоме Леонардо.
54. Сын Бессемера, в кн.: Bessemer, An Autobiography, p. 36.
55. Нагревательный резервуар Шумана удерживал тепло, подобно теплице. Стекло удерживает тепло, потому что прозрачно для электромагнитных волн видимого спектра, которые Солнце излучает с высокой интенсивностью, но зато оно не пропускает более длинные волны инфракрасного спектра, исходящие преимущественно от поверхности Земли. Свет проходит через стекло и поглощается землей. Когда энергия направляется обратно в виде инфракрасного излучения, она не может пройти сквозь стекло, которое таким образом удерживает тепло.
56. Kryza, The Power of Light, p. 11.
57. Becquerel A. E. «Memoire sur les eff ets electriques produits sous l’infl uence des rayons solaires», Comptes Rendus, 9, p. 560–567 (1839).
58. Деятельность Пирсона и Фуллера в Белловских лабораториях первоначально не была направлена на создание фотоэлектрического элемента: они пытались изготовить более совершенный кремниевый транзистор.
59. Yergin, The Quest, p. 570.
60. Кремний, как и углерод, имеет четыре электрона во внешней оболочке и поэтому устанавливает связи с собой, образуя кристалл, подобно тому как атомы углерода образуют связи между собой, в результате чего создается алмаз. Чтобы выбить электроны из этой кристаллической структуры, требуется большая энергия, и поэтому, так как электрический ток представляет собой поток электронов, чистый кремний способен в лучшем случае проводить очень слабый ток. Лучший полупроводник может быть создан посредством «добавления» кристалла с атомами других элементов. Либо эти атомы будут добавлять дополнительные электроны в кристалл, либо будут действовать как «дырки», в которые могут попадать электроны, в результате чего протекает более сильный ток. Если в полупроводнике избыток электронов, он называется полупроводником n-типа (n – от negative), если же избыток дырок, то полупроводником p-типа (p – от positive). Солнечный фотоэлемент состоит из слоя кремния n-типа, помещенного между двумя слоями кремния p-типа. Электрическое поле создается между отрицательными свободными электронами и положительными свободными дырками. Когда фотон поглощается солнечным фотоэлементом, он разбивает пару электрон-дырка на свободный электрон и свободную дырку, которые затем движутся в противоположные стороны устройства под воздействием электрического поля. Этот поток может использоваться как источник электрической энергии.
61. Кремний – важный инструмент для возобновляемого и не возобновляемого аспекта перехода. Сланцевый газ высвобождается из породы под воздействием песка (двуокись кремния) и воды под высоким давлением.
62. «Vast Power of the Sun Is Tapped By Battery Using Sand Ingredient», New York Times, 26 April 1954.
63. IBM 11230, Initial Press Release, IBM Data Processing Division, 11 February 1965.
64. В 2002 г. было проведено беспрецедентное исследование на месторождении Тандер Хорс, позволившее получить около 28 терабайт информации, что в миллиард раз больше, чем память IBM 1130. На обработку этой информации компьютерным центром BP в Хьюстоне ушло около месяца, но всего двумя годами ранее потребовалось бы два года.
Читать дальшеИнтервал:
Закладка: