Ли Смолин - Возвращение времени. От античной космогонии к космологии будущего
- Название:Возвращение времени. От античной космогонии к космологии будущего
- Автор:
- Жанр:
- Издательство:Array Литагент «Corpus»
- Год:2014
- Город:Москва
- ISBN:978-5-17-085474-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ли Смолин - Возвращение времени. От античной космогонии к космологии будущего краткое содержание
Возвращение времени. От античной космогонии к космологии будущего - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Может ли быть теория успешной в плане предсказаний и в то же время некорректной в том смысле, что будущие теории могут полностью изменить ее предположения об устройстве мира? В истории науки такое случалось. Предположения, лежащие в основе механики Ньютона, были опровергнуты квантовой теорией и теорией относительности. Геоцентрическая модель Птолемея служила нам более тысячи лет, хотя и была основана на ошибочной гипотезе. Эффективность еще не гарантирует истинности.
Я пришел к убеждению, что квантовая механика со временем разделит судьбу теорий Ньютона и Птолемея. Возможно, мы не понимаем смысла квантовой теории именно потому, что она не является истинной. Вероятно, это приближение более глубокой теории, которая будет понятнее. Эта другая теория и есть пока неизвестная нам космологическая теория, о которой я пишу. Ключевым моментом здесь также является реальность времени.
Проблемы с пониманием квантовой механики возникают по трем причинам. Во-первых, квантовая теория не отвечает, что конкретно происходит в каком-либо процессе или эксперименте. В противоположность прежним теориям, квантовая механика не объясняет, как протекает процесс в каждый момент. Во-вторых, в большинстве случаев она не предсказывает точно исход опыта. Вместо этого квантовая теория предсказывает вероятность, с которой произойдет то или иное событие. Третьим (и самым трудным) моментом являются понятия измерения, наблюдения или информации, необходимой для формулировки теории. Эти понятия должны рассматриваться на аксиоматическом уровне. Они не могут быть объяснены исходя из фундаментальных предположений квантовой теории. Она не объясняет, как экспериментатор исследует микроскопические системы. На квантово-механическом языке не описываются ни инструменты, при помощи которых мы воздействуем на систему, ни часы, ни даже мы сами как наблюдатели. Чтобы построить истинную космологическую теорию, мы обязаны распространить ее на Вселенную в целом, включая нас как наблюдателей, измерительные приборы и часы [105].
Занимаясь поисками этой новой теории, мы должны держать в памяти три свойства природы, установленные в рамках квантово-механической теории: несовместимые вопросы, запутанность и нелокальность .
Каждая система обладает некоторым набором свойств: для элементарных частиц это положение в пространстве и импульс [106], а, например, для обуви – ее цвет и высота каблука. В отношении каждого свойства можно задать вопрос: “Где сейчас находится частица?” или “Какого цвета обувь?” Роль эксперимента как раз в том, чтобы, опросив систему, получить ответы на эти вопросы. Если вы желаете полностью описать систему в рамках классической физики, то должны ответить на все вопросы и получить информацию о всех свойствах системы. Но в квантовой теории, получив ответ на один из вопросов, вы попадаете в ситуацию, в которой ответ на второй вопрос получить невозможно.
Так, вы можете спросить, где находится частица или какой у нее импульс, но не можете узнать то и другое одновременно. Нильс Бор назвал это свойство комплементарностью (дополнительностью). Это имеют в виду физики, когда говорят о некоммутативных переменных . Если бы существовала квантовая мода, цвет обуви и высота каблука могли бы являться несовместимыми свойствами. В классической физике вам не надо выбирать, какое из свойств измерить, а какое оставить как неизмеряемое. И вот вопрос: влияет ли выбор экспериментатора на свойства исследуемой системы?
Запутанность – также чисто квантово-механическое явление: пары квантовых систем могут обладать определенными свойствами, при этом свойства каждой отдельно остаются неопределенными. То есть вопрос об относительных свойствах двух систем имеет определенный ответ, а ответа на вопрос о свойствах каждой системы отдельно нет. Рассмотрим пару квантовых ботинок. Они могут обладать противоположными свойствами: на любой вопрос каждый ботинок даст противоположный ответ. Если вы спросите ботинки об их цвете, левый ответит “белого”, правый – “черного”, и наоборот. Или поинтересуемся высотой каблука: если левый – высокий, правый обязательно окажется низким, и наоборот. Если спросить лишь левый ботинок о высоте каблука, вы услышите (с вероятностью 50 %) “высокий” либо “низкий”. Аналогично, в отношении цвета ботинка ответ будет “белый” либо “черный” (с той же вероятностью). На самом деле, если квантовая пара имеет противоположные свойства, то на любой вопрос о свойствах одного ботинка будет получен случайный ответ, а на вопрос, адресованный паре, будут определенно даны противоположные ответы.
В классической физике свойства пары частиц сводятся к свойствам каждой из них отдельно. Явление запутанности свидетельствует о том, что для квантовых систем это не так. Для наших рассуждений важно, что благодаря запутанности мы можем создавать системы с новыми свойствами. Если мы запутаем две квантовые системы с противоположными свойствами, которые никогда прежде не взаимодействовали, мы создадим новое свойство, которое ранее в природе не встречалось.
Запутанные пары обычно получаются при взаимодействии двух субатомных частиц. Однажды запутавшись, они так и остаются в запутанном состоянии, даже разлетевшись на большое расстояние. И пока одна из этих частиц не взаимодействует с другой системой, пара остается в запутанном состоянии с противоположными свойствами. Здесь мы подошли к третьему, самому поразительному свойству квантовых систем – нелокальности .
Мы в Монреале. Возьмем пару запутанных ботинок с противоположными свойствами: левый отправим в Барселону, а правый – в Токио. Экспериментаторы в Барселоне решают определить цвет ботинка. Это решение мгновенно повлияет на цвет токийского ботинка. Как только наблюдатели в Барселоне определили цвет своего ботинка, они могут предсказать, что ботинок в Токио имеет противоположный цвет.
В XX веке мы привыкли к тому, что физическое взаимодействие локально, то есть передача информации из одного места в другое происходит посредством частиц или волн. Согласно специальной теории относительности, любое воздействие распространяется не быстрее скорости света. Получается, что в квантовой физике этот основной постулат теории относительности нарушается.
Нелокальные эффекты в квантовой теории действительно присутствуют, но они не могут быть использованы для передачи информации между Барселоной и Токио. Какое бы свойство обуви ни выбрали для измерения экспериментаторы в Токио, результат измерений будет случаен. Их ботинок будет с одинаковой вероятностью то белым, то черным. Только тогда, когда они узнают, какого цвета ботинок в Барселоне, они смогут убедиться, что пара разного цвета. А чтобы в этом убедиться, необходимо передать информацию из Барселоны в Токио, то есть передать сигнал со скоростью света или медленнее.
Читать дальшеИнтервал:
Закладка: