Дэвид Дойч - Начало бесконечности. Объяснения, которые меняют мир
- Название:Начало бесконечности. Объяснения, которые меняют мир
- Автор:
- Жанр:
- Издательство:Array Литагент «Альпина»
- Год:2014
- Город:Москва
- ISBN:978-5-9614-3541-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэвид Дойч - Начало бесконечности. Объяснения, которые меняют мир краткое содержание
Начало бесконечности. Объяснения, которые меняют мир - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
ЧИТАТЕЛЬ: Получается, что эта струйка фотонов, проходящих через интерферометр, действительно открывает окно с видом на огромную множественность вселенных.
ДЭВИД: Да. Это еще один пример силы, и лишь малой доли силы квантовой теории. Объяснение этих экспериментов по отдельности не так сложно варьировать, как всю теорию. Но в том, что касается существования других вселенных, оно, бесспорно, остается таким же.
ЧИТАТЕЛЬ: И это все?
ДЭВИД: Да.
ЧИТАТЕЛЬ: Но тогда почему к согласию пришла лишь малая часть физиков, занимающихся квантовой теорией?
ДЭВИД: Из-за несостоятельной философии.
ЧИТАТЕЛЬ: А что это?
Квантовая теория была открыта двумя физиками – Вернером Гейзенбергом и Эрвином Шредингером – независимо друг от друга, и они подошли к ней с разных сторон. В честь второго из них названо уравнение Шредингера , которое представляет собой способ выражения квантово-механических законов движения.
Обе версии теории были сформулированы между 1925 и 1927 годами, и в обеих движение, особенно в атомах, объяснялось новым и совершенно контринтуитивным образом. Теория Гейзенберга утверждала, что физические переменные, характеризующие какую-либо частицу, не имеют числовые значения. Это матрицы : большие массивы чисел, связанные сложным, вероятностным образом с исходами наблюдений этих переменных. Это теперь мы знаем, что множественность информации существует, потому что переменная принимает различные значения для различных экземпляров объекта в мультивселенной. А тогда ни Гейзенберг, ни кто-либо другой не верили, что его матрично-значные величины буквально описывают то, что Эйнштейн называл «элементами реальности».
Уравнение Шредингера применительно к отдельной частице описывало волну, движущуюся в пространстве. Но Шредингер вскоре понял, что для случая двух или более частиц это не так. Уравнение не описывало волну с множеством гребней, его нельзя было разрешить с получением двух или более волн; с математической точки зрения получалась одна волна в пространстве более высокой размерности. Это теперь мы знаем, что такие волны описывают, какая доля экземпляров каждой частицы находится в каждой области пространства, а также информацию о запутанности частиц между собой.
Хотя казалось, что теории Шредингера и Гейзенберга описывают очень непохожие миры, каждый из которых было непросто соотнести с существующими представлениями о реальности, вскоре обнаружилось, что, если добавить к каждой теории определенное, простое эмпирическое правило, они всегда будут делать идентичные предсказания . Более того, эти предсказания оказались весьма удачными.
Теперь, оглядываясь в прошлое, мы можем сформулировать это правило так: при каждом измерении перестают существовать все истории, кроме одной. Этот вариант выбирается случайным образом, а вероятность каждого возможного исхода равна суммарной мере всех историй, в которых этот исход реализуется.
Но потом случилась беда. Вместо того чтобы попытаться усовершенствовать и объединить эти две сильные, хотя и небезупречные, объяснительные теории и понять, почему такая эмпирическая закономерность работает, большая часть сообщества физиков-теоретиков быстро, как по команде, ушла в инструментализм. Если предсказания сбываются, рассуждали они, зачем беспокоиться о каком-то объяснении? И они пытались рассматривать квантовую теорию всего лишь как набор эмпирических закономерностей для предсказания наблюдаемых исходов экспериментов, ничего (больше) не говорящих о реальности. Такой взгляд популярен и сегодня, и его критики (и даже некоторые сторонники) называют его «интерпретацией квантовой теории в стиле «заткнись и считай».
Это означало игнорирование ряда неудобных фактов. Во-первых, того, что это эмпирическое правило совершенно несовместимо с обеими теориями; поэтому его можно использовать лишь в тех ситуациях, когда квантовые эффекты слишком малы и, как следствие, незаметны. В их число попадал момент измерения (из-за запутанности с измерительным инструментом и последующей декогеренции, как мы теперь знаем). Во-вторых, оно даже не было самосогласованным применительно к гипотетическому случаю, когда один наблюдатель производит квантовое измерение по отношению к другому наблюдателю. И в-третьих, обе версии квантовой теории явно описывали физический процесс некоторого типа, который привел к результатам эксперимента. Физикам, как в силу их профессионализма, так и из природного любопытства, трудно удержаться и не заинтересоваться этим процессом. Хотя многие и пытались сдержаться. И большинство из них учили этому студентов. Это мешало научной традиции критики по отношению к квантовой теории.
Я определю «несостоятельную философию» как философию, которая не просто неверна, но и активно препятствует развитию другого знания. В данном случае действие инструментализма было направлено на то, чтобы помешать усовершенствованию, развитию или объединению объяснений, даваемых теориями Шредингера и Гейзенберга.
Физик Нильс Бор (еще один первопроходец квантовой эпохи) разработал тогда «интерпретацию» теории, которая впоследствии получила название «копенгагенская интерпретация». Она утверждала, что квантовая теория, включая эмпирическое правило, является полным описанием реальности. Различные противоречия и пробелы Бор объяснял, комбинируя инструментализм с намеренной двусмысленностью. Он отрицал возможность «говорить о явлении как о существующем объективно», но утверждал, что явлениями нужно считать только исходы наблюдений. Он также говорил, что, хотя у наблюдения нет доступа к «реальной сущности явлений», оно все же открывает взаимоотношения между ними и что вдобавок квантовая теория размывает различие между наблюдателем и наблюдаемым. Но вопроса о том, что случится, если один наблюдатель произведет наблюдение за другим на квантовом уровне, он избегал, и этот вопрос получил название «парадокс друга Вигнера», в честь физика Юджина Вигнера.
Относительно ненаблюдаемых процессов между наблюдениями, где теории Шредингера и Гейзенберга, казалось, описывали множество историй, происходящих одновременно, Бор предложил новый фундаментальный принцип природы – «принцип дополнительности». Он гласил, что явления можно описывать только на «классическом языке», то есть на языке, который приписывает физическим переменным единственное значение в каждый отдельный момент времени, но этот классический язык можно использовать только для некоторых переменных, включая только что измеренные. Спрашивать, каковы значения других переменных, не разрешалось. Таким образом, например, в ответ на вопрос «По какому из путей полетел фотон?» в интерферометре Маха – Цендера ответом было, что если путь не наблюдался, то нет и такого понятия, как «какой из путей». На вопрос «Тогда как фотон узнает, куда ему поворачивать за последним зеркалом, ведь это зависит от того, что было на обоих путях?» давался уклончивый ответ, называемый «корпускулярно-волновым дуализмом»: фотон одновременно является объектом протяженным (с ненулевым объемом) и локализованным (с нулевым объемом), и для наблюдения можно выбрать одно из свойств, но не оба. Часто это выражается словами: «Фотон одновременно является и волной, и частицей». Как это ни парадоксально, но в некотором смысле эти слова в точности верны: в этом эксперименте весь мультиверсный фотон действительно является протяженным объектом (волной), а его экземпляры (частицы в отдельных историях) локализованы. К сожалению, это не то, что имелось в виду в копенгагенской интерпретации. Ее идея была в том, что квантовая физика бросает вызов самим основам разума: у частиц имеются взаимоисключающие свойства, и точка. Попытки критики этой идеи отвергаются как необоснованные, потому что это попытки использовать «классический язык» вне отведенной ему области применения (а именно описания исходов измерений).
Читать дальшеИнтервал:
Закладка: