Линн Фостер - Нанотехнологии. Наука, инновации и возможности
- Название:Нанотехнологии. Наука, инновации и возможности
- Автор:
- Жанр:
- Издательство:Техносфера
- Год:2008
- Город:Москва
- ISBN:978-5-94836-16
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Линн Фостер - Нанотехнологии. Наука, инновации и возможности краткое содержание
В предлагаемой книге авторы – известные ученые и бизнесмены, занимающиеся теоретическими и практическими проблемами нанотехнологий, – описывают состояние дел и перспективы их развития на ближайшее десятилетие, а также возможное воздействие нанотехнологий на глобальные процессы.
Книга предназначена для широкого круга читателей: научных работников, специалистов, а также студентов профильных учебных заведений.
Перевод: Арсен Хачоян
Нанотехнологии. Наука, инновации и возможности - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
С другой стороны, захват каких-то секторов рынка может быть значительно облегчен, если предлагаемое инновационное устройство по каким-то параметрам действительно отвечает ожиданиям потребителей или сразу демонстрирует свое превосходство перед уже существующими прототипами. В области нанотехнологий удачным примером такого подхода может служить появление в мае 2004 года на коммерческом рынке нового типа компьютерных запоминающих и логических устройств с большим объемом памяти (на основе углеродных нанотрубок), которые неожиданно стала выпускать фирма Nantero Inc. в штате Массачусетс [22] .
Кроме того, конечно, остается и возможность неожиданного выпуска совершенно новых, непривычных для потребителя товаров и материалов. Например, фирма Zettacore Inc. (Инглвуд, штат Колорадо) стала выпускать запоминающие устройства, в которых используются органические молекулы (производные хлорофилла), способные к удерживанию электронов. Исследовательская группа университета в Бостоне сумела поразить всех специалистов, продемонстрировав в конце 2004 года аналог компьютерного устройства, в котором привычным для электронщиков состояниям 0 и 1 соответствуют изгибы (в ту или иную сторону) микроскопической балки длиной всего 8000 нанометров. Испытания показали, что такое устройство позволяет не только уверенно осуществлять вычислительные операции и запоминать данные, но и создать запоминающее устройство с объемом памяти 100 Гигабит/дюйм2, работающее на частоте около 1 Гигагерца. Такое устройство значительно превосходит по характеристикам все полупроводниковые аналоги.
Выше я привел три примера, относящиеся к разным направлениям развития нанотехнологий (молекулярная инженерия, использование биологических молекул, новые физические эффекты в нанометрических масштабах), которые наглядно демонстрируют широкие возможности, открывающиеся перед учеными и разработчиками в новых технологиях. Давайте забудем о приставке нано – и попробуем еще раз понять, что означает для нас слово технология. В качестве общеизвестного примера мы можем взять, например, технологию производства стрелкового оружия, которая означает, формально говоря, лишь возможность концентрировать энергию в требуемых масштабах и ее дальнейшее использование в удобной форме при требуемых условиях. Источник энергии при этом должен оставаться стабильным и включаться только после срабатывания детонирующих устройств и т. п. Технология должна обеспечивать безопасность изделий во всех остальных ситуациях. Примерно то же можно сказать о нанотехнологиях – они должны обеспечивать концентрацию и использование энергии в требуемых целях, а разница сводится лишь к тому, что эта энергия имеет иные формы и виды (электронная, фотонная или даже механическая).
Продолжая аналогию, стоит вспомнить, что технологии стрелкового оружия непосредственно связаны с материаловедением. Простых материалов достаточно лишь для изготовления очень примитивных устройств (типа пушек), но сложные устройства требуют разработки и исследования свойств множества деталей из разных материалов. Примерно такая же ситуация возникнет при производстве достаточно сложных нанотехнологических изделий.
Завершая сравнение, отмечу, что технология оружия требует развития точных и воспроизводимых методов производства, что подразумевает создание инструментальной базы и целого набора измерительной аппаратуры. С крайне формальной точки зрения, нанопроизводство имеет дело лишь с атомами и молекулами, однако и в этом случае необходимо по крайней мере иметь аппаратуру, позволяющую описывать и оценивать структуры нанометрического масштаба. Кроме того, такое производство требует наличия инструментальной базы, обеспечивающей манипуляции с «нанодеталями», а оценка свойств вещества на этом уровне точности представляет собой совсем не простую техническую задачу.
Я пытаюсь объяснить, что развитие нанотехнологии (подобно любой другой существующей технологии) невозможно без разработки большого числа вспомогательных устройств, измерительных приборов и т. д. К счастью, в последние годы наблюдается заметный прогресс в этом направлении. Например, компания EEI Co (Хиллсборо, штат Орегон) в 2004 году сообщила о возможности получения изображений с точностью около 1 ангстрема, что соответствует размерам отдельного атома водорода [23] . Министерство энергетики США приступило к созданию микроскопа с разрешением 0,5 ангстрема, в котором применяются магнитные «линзы», позволяющие корректировать искажения [24] . В настоящее время первое устройство такого типа монтируется в Национальной лаборатории имени Лоуренса (Беркли, штат Калифорния), а ввод в эксплуатацию намечен на 2008 год.
3.5. Превращение науки в технологию и бизнес
Образно говоря, в настоящее время нанотехнология переживает свою юность, переходя от неоформленного детского состояния к зрелому и ответственному этапу развития. Для технологии, как и для человека, существуют характерные особенности «юношеского поведения», некоторые из них читатель может заметить сам. На рынке наноматериалов уже стали происходить смешные и анекдотические истории, характерные для начального этапа развития любых новых технологий (история техники полна такими историями). Например, какие-то мошенники смогли продать партию обычной сажи, выдав ее за углеродные нанотрубки, а другим удалось «всучить» покупателям партию очень дорогих в изготовлении нанотрубок специального типа, на одну треть состоящую из использованного при синтезе катализатора, который жулики «забыли» отделить. Такие истории свидетельствуют не только о развитии и становлении рынка, но и о реальном спросе на новые материалы.
Уже можно заметить, что наибольшее число жалоб и споров вызывают поставки тех материалов, которые требуют особой чистоты молекулярных структур и точности производства (например, нанотрубок и фуллеренов). Появление на рынке и внедрение материалов, свойства которых связаны со статистическими характеристиками и легче подаются проверке и измерению (например, нанопористые покрытия), происходит гораздо проще и быстрее. Это вновь напоминает нам о необходимости разработки точной измерительной аппаратуры, систематизированной программы испытаний и не в последнюю очередь согласованных стандартов на количественные и качественные характеристики для нарастающего числа новых материалов с новыми свойствами.
Еще одной особенностью, характерной для «молодых» технологий, становится проблема безопасности использования материалов и изделий неизвестных ранее видов. Например, только сейчас становится ясным, что наночастицы могут беспрепятственно проникать практически через все защитные системы человеческого организма, включая кожу и стенки сосудов кровеносной системы. Эти свойства уже изучались учеными для различных медицинских применений, однако сейчас наступила пора задуматься о возможности токсичного воздействия частиц на организм в целом. Медицина накопила некоторый опыт в этом отношении, так как наночастицы содержатся в автомобильных выхлопах, многих медицинских и косметических препаратах, промышленных отходах и т. п., однако нанотехнологии приведут к значительному росту количества поступающих в окружающую среду частиц и их разнообразия. Все эти вопросы требуют тщательного рассмотрения, законодательного оформления и выработки общественной позиции.
Читать дальшеИнтервал:
Закладка: