Ричард Докинз - Рассказ предка. Паломничество к истокам жизни
- Название:Рассказ предка. Паломничество к истокам жизни
- Автор:
- Жанр:
- Издательство:Литагент «Corpus»47fd8022-5359-11e3-9f30-0025905a0812
- Год:2015
- Город:Москва
- ISBN:978-5-17-084589-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Докинз - Рассказ предка. Паломничество к истокам жизни краткое содержание
Известный ученый-натуралист и популяризатор науки приглашает в грандиозное путешествие длиной в четыре миллиарда лет – к истокам жизни на Земле. По мере погружения в прошлое к нам, людям, присоединятся другие “пилигримы”, ищущие собственных прародителей. И тогда выяснится, что у нас общая история – и предки – не только с “сестрой цикадой” и “братом фазаном”, но и с растениями, грибами и бактериями, – со всеми организмами на планете.
Рассказ предка. Паломничество к истокам жизни - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Известность, которую T. aquaticus приобрела в качестве волшебника, является достаточным основанием для того, чтобы доверить ей этот рассказ. Впрочем, это не единственная причина, по которой нам подходит T. aquaticus. Она относится к небольшой группе бактерий, известных как галобактерии (Hadobacteria). По мнению Тома Кавалир-Смита (см. рандеву № 39), галобактерии вместе с зелеными несернистыми бактериями являются самой ранней ответвившейся бактериальной группой. Если так, то они самые дальние родственники всех остальных форм жизни.
Согласно такой точке зрения, T. aquaticus и родственные ей бактерии – настоящие маргиналы. У других бактерий есть общий предок, который объединяет их с остальными живыми существами. Но только не у T. aquaticus. Если гипотеза в дальнейшем подтвердится, это будет означать вот что. Как любую бактерию можно использовать для укоренения филогенетического древа всех остальных живых существ, так и T. aquaticus можно использовать для укоренения филогенетического древа всех остальных бактерий. Правда, пока особый статус T. aquaticus не получил надежных доказательств. Но мы можем не сомневаться в том, что основная доля разнообразия жизни на фундаментальном химическом уровне приходится на микробов, подавляющее большинство которых – бактерии. А поскольку разнообразие жизни в основном касается ее химических аспектов, историю об этом разнообразии должна рассказывать именно бактерия. Так что пусть это будет T. aquaticus.
Традиционно – и по понятным причинам – мы смотрим на все с точки зрения крупных животных. Мы относим живое к растительному или животному царствам, и отличие кажется нам вполне очевидным. Прежде грибы считались растениями, потому что они, как правило, живут на одном месте и не убегают от нас. До XIX века мы даже не подозревали о существовании бактерий. А когда ученые впервые увидели их в микроскоп, они не знали, как их классифицировать. Одни считали их крошечными растениями, другие – крошечными животными. Третьи относили светопоглощающих бактерий к растениям (“сине-зеленые водоросли”), а остальных – к животным. Примерно так же поступили с “протистами” – одноклеточными эукариотами, которые не относятся к бактериям и гораздо крупнее их. Зеленых протистов назвали протофитами (Protophyta), а остальных – протозоями (Protozoa). Самый известный пример протозоя – амеба, которую когда-то считали чуть ли не великим предком всей жизни на Земле. Как мы ошибались! Ведь амеба с точки зрения бактерий почти неотличима от людей.

Фундаментальные ветвления на древе жизни. Филогенетическая схема, построенная по молекулярным данным. Gribaldo and Philippe [113].
Однако это было тогда, когда существ классифицировали по их внешним признакам. А по внешним признакам бактерии гораздо менее разнообразны, чем животные или растения, и вполне понятно, почему их считали примитивными. Однако все изменилось, когда для классификации стали использовать молекулярные данные и мы ознакомились со спектром биохимических “профессий” микробов.
Если мы считаем группы животных и растений царствами, мы должны признать, что существуют десятки микробных “царств”, уникальность которых дает им полное право на такой статус. На диаграмме изображена лишь верхушка айсберга. Сюда не попали некоторые глубоко укорененные ветви. Кроме того, здесь представлены лишь те существа, которые живут в доступных местах и могут быть культивированы в лаборатории. А ведь если мы соберем всю ДНК из пока не известных нам мест, мы найдем новые микробные царства. Животные, растения и грибы представляют три небольших ветви на древе жизни. Эти три царства отличает то, что относящиеся к ним организмы – крупные и состоят из множества клеток. Другие царства почти целиком состоят из микроорганизмов. Так почему бы не объединить их в одно микробное царство, которое будет иметь тот же статус, что и каждое из трех царств многоклеточных? Одна из причин, почему мы не можем так поступить, такова: на биохимическом уровне многие из микробных царств столь же сильно отличаются друг от друга и от “большой тройки”, как и три царства многоклеточных – между собой.
Нет смысла спорить, сколько царств: двадцать или сто. Однако из диаграммы видно, что многочисленные царства делятся на три сверхцарства, или домена, по терминологии Карла Везе. Первый – наш собственный домен эукариот, в компании которых мы провели большую часть пути. Второй – это археи. К ним относятся микробы, с которыми мы встретились на рандеву № 38 и которые, согласно устаревшим представлениям, группировались с третьим доменом – настоящими (то есть эу-) бактериями. Представители этого домена присоединяются к нам на последнем рандеву. Между прочим, это честь – разделить путь с вездесущими и самыми эффективными машинами по распространению ДНК.
Сама диаграмма, конечно, построена на основе признаков, которые мы можем увидеть или потрогать. Чтобы сравнить группу организмов, мы должны выбрать признаки, которые есть у всех. Мы не можем использовать для сравнения ноги, если у большинства видов их нет. Ноги, головы, листья, ключицы, корни, сердца, митохондрии: все это присутствует далеко не у всех живых существ. А вот наличие ДНК – универсальный признак, и в ней есть некоторое количество генов, которые имеют все живые существа – за единичными исключениями. Именно эти гены подходят для сравнения.
И, возможно, лучший пример – гены, с помощью которых образуются рибосомы.
Рибосомы – это клеточные “машины”, которые считывают информацию РНК (транскрибированных с генов ДНК) и синтезируют белки. Рибосомы жизненно необходимы всем клеткам и присутствуют во всех них. Сами они в основном построены из рибосомальной РНК (рРНК) и совершенно не похожи на “ленты” РНК, которые считывают рибосомы, синтезируя белок. Гены ДНК кодируют рРНК. Последовательность рРНК может быть считана либо непосредственно, либо в виде ДНК, которая ее кодирует: рДНК. У всех организмов есть рДНК, но используется она не только поэтому. Она почти одинакова у всех существ, чтобы было что сравнивать, но не идентична. Применив к рДНК методы, о которых мы говорили в “Рассказе Гиббона”, можно нарисовать древо жизни и оценить эволюционные расстояния в пределах трех основных доменов или даже между ними. Однако нужно соблюдать осторожность: рДНК крайне уязвима для эффекта “притяжения длинных ветвей” и подобных ловушек. Но, призвав на помощь другие гены и используя редкие геномные изменения – вставки и делеции больших участков ДНК, – мы добьемся успеха. Конечно, некоторые ветви на древе будут ненадежны – особенно среди эубактерий, что объясняется их склонностью к обмену участками ДНК (с этой проблемой мы не сталкивались ни у одной из эукариотических групп). Впрочем, ученым удалось обнаружить группу бактериальных генов, которые редко обмениваются ДНК. Надеюсь, однажды мы сможем установить достоверный порядок ветвления на древе жизни. Я этого очень жду.
Читать дальшеИнтервал:
Закладка: