Альберт Эйнштейн - Относительность. Мои искания и стремления
- Название:Относительность. Мои искания и стремления
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2020
- Город:Москва
- ISBN:978-5-907255-71-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Альберт Эйнштейн - Относительность. Мои искания и стремления краткое содержание
В книгу, представленную вашему вниманию, вошли наиболее значительные произведения А. Эйнштейна, в которых дает свое видение мира, человека, будущего мировой цивилизации и науки. Цель книги обозначена самим Эйнштейном: «Я думаю, что показать своим ищущим собратьям, какими представляются собственные искания и стремления – дело хорошее. А мысленный охват, в рамках доступных нам возможностей, внеличного мира представлялся мне как высшая цель».
Относительность. Мои искания и стремления - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Для меня не подлежит сомнению, что наше мышление протекает, в основном минуя символы (слова) и к тому же бессознательно. Если бы это было иначе, то почему нам случается иногда «удивляться», притом совершенно спонтанно, тому или иному восприятию? Этот «акт удивления», по-видимому, наступает тогда, когда восприятие вступает в конфликт с достаточно установившимся в нас миром понятий. В тех случаях, когда такой конфликт переживается остро и интенсивно, он, в свою очередь, оказывает сильное влияние на наш умственный мир. Развитие этого умственного мира представляет собой в известном смысле преодоление чувства удивления – непрерывное бегство от «удивительного», от «чуда».
Чудо такого рода я испытал ребенком 4 или 5 лет, когда мой отец показал мне компас. То, что эта стрелка вела себя так определенно, никак не подходило к тому роду явлений, которые могли найти себе место в моем неосознанном мире понятий (действие через прикосновение). Я помню еще и сейчас – или мне кажется, что я помню, – что этот случай произвел на меня глубокое и длительное впечатление. За вещами должно быть что-то еще, глубоко скрытое. Человек так не реагирует на то, что он видит с малых лет. Ему не кажется удивительным падение тел, ветер и дождь, он не удивляется луне и тому, что она не падает, не удивляется различию между живым и неживым.
В возрасте 12 лет я пережил еще одно чудо совсем другого рода: источником его была книжечка по евклидовой геометрии на плоскости, которая попалась мне в руки в начале учебного года. Там были утверждения, например о пересечении трех высот треугольника в одной точке, которые хотя и не были сами по себе очевидны, но могли быть доказаны с уверенностью, исключавшей как будто всякие сомнения. Эти ясность и уверенность произвели на меня неописуемое впечатление. Меня не беспокоило то, что аксиомы должны быть приняты без доказательства. Вообще, мне было вполне достаточно, если я мог в своих доказательствах опираться на такие положения, справедливость которых представлялась мне бесспорной. Я помню, например, что теорема Пифагора была мне показана моим дядей еще до того, как в мои руки попала священная книжечка по геометрии. С большим трудом мне удалось «доказать» эту теорему при помощи подобных треугольников; при этом мне казалось, однако, «очевидным», что отношение сторон прямоугольного треугольника должно полностью определяться одним из его острых углов. Вообще, мне казалось, что доказывать нужно только то, что не «очевидно» в этом смысле. И предметы, с которыми имеет дело геометрия, не казались мне другой природы, чем «видимые и осязаемые» предметы, т. е. предметы, воспринимаемые органами чувств. Это примитивное понимание основано, конечно, на том, что бессознательно учитывалась связь между геометрическими понятиями и наблюдаемыми предметами (длина – твердый стержень и т. п.). Возможно, что это понимание лежит в основе известной кантовской постановки вопроса относительно возможности «синтетического суждения априори».
Хотя это выглядело так, будто путем чистого размышления можно получить достоверные сведения о наблюдаемых предметах, но такое «чудо» было основано на ошибке. Все же тому, кто испытывает это «чудо» в первый раз, кажется удивительным самый факт, что человек способен достигнуть такой степени надежности и чистоты в отвлеченном мышлении, какую нам впервые показали греки в геометрии.
Раз я позволил себе прервать начатый с грехом пополам некролог, я уже не буду стесняться выразить здесь в нескольких фразах свое гносеологическое кредо, хотя кое-что из этого было уже попутно сказано ранее. Эти мои убеждения складывались медленно и сложились много позднее; они не соответствуют тем установкам, которые у меня были, когда я был моложе.
Я вижу, с одной стороны, совокупность ощущений, идущих от органов чувств; с другой – совокупность понятий и предложений, записанных в книгах. Связи понятий и предложений между собою – логического характера; задача логического мышления сводится исключительно к установлению соотношений между понятиями и предложениями по твердым правилам, которыми занимается логика. Понятия и предложения получают смысл, или «содержание», только благодаря их связи с ощущениями. Связь последних с первыми – чисто интуитивная и сама по себе нелогической природы. Научная «истина» отличается от пустого фантазирования только степенью надежности, с которой можно провести эту связь или интуитивное сопоставление, и ничем иным. Система понятий есть творение человека, как и правила синтаксиса, определяющие ее структуру. Хотя системы понятий сами по себе логически совершенно произвольны, но их связывает то, что они, во-первых, должны допускать, возможно, надежное (интуитивное) и полное сопоставление с совокупностью ощущений; во-вторых, должны стремиться обойтись наименьшим числом логически независимых элементов (основных понятий и аксиом), т. е. таких понятий, для которых не дается определений, и таких предложений, для которых не дается доказательств.
Предложение верно, если оно выведено внутри некоторой логической системы по принятым правилам. Содержание истины в системе определяется надежностью и полнотой ее соответствия с совокупностью ощущений. Вернее, предложение заимствует свою «истинность» из запаса истины, содержащегося в системе, его заключающей.
Юм ясно понял, что некоторые понятия, например понятие причинности, не могут быть выведены из опытных данных логическим путем. Кант, убежденный в том, что без некоторых понятий обойтись нельзя, считал эти понятия в их принятой форме необходимыми предпосылками всякого мышления и отличал их от понятий эмпирического происхождения. Я же уверен, что это разграничение ошибочно и не охватывает естественным образом задачу. Все понятия, даже и ближайшие к ощущениям и переживаниям, являются с логической точки зрения произвольными положениями, точно так же, как и понятие причинности, о котором в первую очередь шла речь.
Возвращаюсь теперь к некрологу. В возрасте 12–16 лет я ознакомился с элементами математики, включая основы дифференциального и интегрального исчисления. При этом, на мое счастье, мне попались книги, в которых обращалось не слишком много внимания на логическую строгость, зато хорошо была выделена везде главная мысль. Все это занятие было поистине увлекательно; в нем были взлеты, по силе впечатления не уступавшие «чуду» элементарной геометрии, – основная идея аналитической геометрии, бесконечные ряды, понятие дифференциала и интеграла. Мне посчастливилось также получить понятие о главнейших результатах и методах естественных наук по очень хорошему популярному изданию, в котором изложение почти везде ограничивалось качественной стороной вопроса (бернштейновские естественно-научные книги для народа – труд в 5–6 томов); книги эти я читал, не переводя дыхания. К тому времени, когда я в возрасте 17 лет поступил в Цюрихский политехникум в качестве студента по физике и математике, я уже был немного знаком и с теоретической физикой.
Читать дальшеИнтервал:
Закладка: