Дэйв Голдберг - Вселенная! Курс выживания среди черных дыр. временных парадоксов, квантовой неопределенности

Тут можно читать онлайн Дэйв Голдберг - Вселенная! Курс выживания среди черных дыр. временных парадоксов, квантовой неопределенности - бесплатно ознакомительный отрывок. Жанр: foreign_desc, издательство Array Литагент «АСТ», год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Вселенная! Курс выживания среди черных дыр. временных парадоксов, квантовой неопределенности
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «АСТ»
  • Год:
    2015
  • Город:
    Москва
  • ISBN:
    978-5-17-090124-1
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Дэйв Голдберг - Вселенная! Курс выживания среди черных дыр. временных парадоксов, квантовой неопределенности краткое содержание

Вселенная! Курс выживания среди черных дыр. временных парадоксов, квантовой неопределенности - описание и краткое содержание, автор Дэйв Голдберг, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.
Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Вселенная! Курс выживания среди черных дыр. временных парадоксов, квантовой неопределенности - читать онлайн бесплатно ознакомительный отрывок

Вселенная! Курс выживания среди черных дыр. временных парадоксов, квантовой неопределенности - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Дэйв Голдберг
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2) с лихвой обеспечить калориями все население городка Терре-Хот в штате Индиана (с населением 57 259 человек) на целый год;

3) заменить энергию примерно 5000 тонн угля или 6 356 000 литров бензина. Если заправить этим бензином автомобиль, можно перевезти на нем всех до единого жителей Терре-Хот из Нью-Йорка в Калифорнию. Непонятно, правда, зачем это делать.

Для сравнения, энергия сгорания двух граммов угля питает одну лампочку примерно час.

Материя как и большинство людей не развивает свой потенциал полностью а если - фото 15

Материя, как и большинство людей, не развивает свой потенциал полностью, а если не считать случаи, когда мы сталкиваем материю с «антиматерией» или «антивеществом» (о чем мы еще поговорим), преобразовать всю массу в энергию невозможно. Так что не считайте, будто от E = mc  2один шаг до полной независимости от нефти, остановитесь. Рано радоваться.

Великое уравнение Эйнштейна изменило мир: самые очевидные примеры его применения – ядерное оружие и атомная энергия. Важно понимать, что при большинстве ядерных реакций мы преобразуем в энергию лишь крошечную часть общей массы материи. Наше Солнце – гигантский термоядерный генератор, который превращает водород в гелий. Основная реакция предполагает, что мы берем четыре атома водорода и получаем один атом гелия и некоторое количество отходов, в том числе нейтрино, позитроны и, само собой, энергию в виде света и тепла. Для нас это крайне выгодно – ведь энергия, вырабатываемая Солнцем, в виде солнечных лучей согревает поверхность Земли, питает растения и водоросли и в конечном счете поддерживает нас как экосистему.

Однако по эффективности всему этому далеко до нашего буммония. Из каждого килограмма водорода, «сгорающего» на Солнце [17] Физики обожают напоминать, что при ядерных реакциях никакого горения не происходит. Горение – это не ядерный, а химический процесс, и для него нужен кислород. , мы получаем 993 грамма гелия, а значит, в энергию преобразуется лишь семь граммов. Однако, как мы уже видели, и небольшой массы хватает для великих дел.

Самые известные примеры преобразования массы-энергии – это именно превращение массы в энергию, а не наоборот, в том числе самые страшные из этих превращений и вообще главный кошмар на этой Земле – ядерные бомбы и радиоактивный распад. В каждом из этих случаев столкновение энергичных частиц или спонтанный распад заставляет небольшое количество массы преобразоваться в ошеломительно огромную энергию. Почему радиоактивные вещества такие страшные? Потому, что даже при одном распаде образуется фотон с такой колоссальной энергией, что дай ему хоть малейший шанс, и он попортит вам клетки.

Когда Вселенная только зародилась, в ней гораздо чаще происходил обратный процесс – из энергии получалась материя, хотя сейчас такое бывает довольно редко. В те далекие времена, когда температура достигала миллиардов градусов, материя то и дело возникала от столкновения лучей света друг с другом. Невероятно, но факт. Вот почему мы вернемся к этому в главе 7.

Хит-парад среди физиков!

Кто самый выдающийся физик современности? Горячая пятерка!

Нас то и дело вовлекают в досужие споры на уровне «кто лучше – Кирк или Пикар?» или «кто самый лучший физик?». Если ответ на первый вопрос очевиден для всякого, кто хотя бы одним глазом смотрел «Звездный Путь» и при этом не йинтагх [18] «Идиот» по-клингонски. Не бейте нас тапком. , то второй вопрос куда сложнее. Если бы спор был на деньги, мы бы отстаивали ту точку зрения, что величайшие физики – те, в чью честь назвали что-нибудь важное и серьезное, даже если кто-нибудь другой уже пришел независимо к тому же выводу. Иногда величайшие мыслители не удостаиваются заслуженной славы (мы думаем о вас, Тесла), но наш список такие случаи, увы, не учитывает – считайте, что таким людям просто не повезло. Нас интересуют именно знаменитости. Кроме того, поскольку мы хотим не отставать от жизни, то, к сожалению, не будем рассматривать заявки от тех, кто совершил самые значительные открытия до 1900 года. Наконец, мы уверены, что многие физики не согласятся с нашим списком, но им мы со всем нашим уважением предложим написать собственную книгу.

Итак:

1. Альберт Эйнштейн (1879–1955),

Нобелевская премия за 1921 год.

Нужны ли здесь какие-либо аргументы? Эйнштейн создал теорию относительности – и специальную (эта глава), и общую (главы 5 и 6), – причем, судя по всему, на абсолютно пустом месте и совершенно самостоятельно. Он неопровержимо доказал, что свет состоит из частиц (глава 2), и стал одним из отцов-основателей квантовой механики, хотя сам в нее толком не верил. Его имя стало синонимом слова «гений», к тому же, положа руку на сердце, он единственный из нашего списка, кого вы знаете в лицо.

2. Ричард Фейнман (1918–1988),

Нобелевская премия за 1965 год.

Благодаря уникальному складу ума Фейнман стал героем и примером практически для каждого молодого физика. Он изобрел квантовую электродинамику, которая при помощи квантовой механики объясняла, как устроено электричество (глава 4), и доказал, что частицы и поля буквально двигаются по всем возможным путям одновременно (глава 2). Кроме того, он прославился как «великий популяризатор», и по крайней мере несколько примеров из нашей книги беспардонно (но со ссылками) свистнуты из лекций Фейнмана.

3. Нильс Бор (1885–1962),

Нобелевская премия за 1922 год.

Довольно скоро вы прочитаете главу 2, которая будет посвящена квантовой механике. Вы ее обязательно полюбите! Даже если нет, ближе к середине главы мы расскажем, что стандартные представления о квантовой механике на настоящий момент называются «копенгагенской интерпретацией». Догадайтесь с трех раз, откуда Бор родом. Бор не только в общих чертах определил мировоззрение современного человека, но и первым создал реалистичную картину атома и показал, что как попало атом не сляпаешь – его состояния «квантуются».

4. Поль Адриен Морис Дирак (1902–1984),

Нобелевская премия за 1933 год.

Дирак был среди тех, кто продрался сквозь целую гору уравнений, получил формулу, которая на вид казалась физически абсурдной, но решил, что «Бог, создавая этот мир, опирался на математические выкладки восхитительной красоты», и решил, что раз так, все эти уравнения все равно верны. Примерно так он и предсказал существование антиматерии за четыре года до того, как ее обнаружили.

5. Вернер Гейзенберг (1901–1984),

Нобелевская премия за 1933 год.

Когда Гейзенбергу присудили Нобелевскую премию, формулировка была такой: «За создание квантовой механики, применение которой, среди прочего, привело к открытию аллотропных форм водорода». Хотя на самом деле Гейзенберг не создал квантовую механику, он внес колоссальный вклад в ее разработку и открыл «принцип неопределенности Гейзенберга». Об этом подробнее в главе 2.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Дэйв Голдберг читать все книги автора по порядку

Дэйв Голдберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Вселенная! Курс выживания среди черных дыр. временных парадоксов, квантовой неопределенности отзывы


Отзывы читателей о книге Вселенная! Курс выживания среди черных дыр. временных парадоксов, квантовой неопределенности, автор: Дэйв Голдберг. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x