Педро Домингос - Верховный алгоритм: как машинное обучение изменит наш мир

Тут можно читать онлайн Педро Домингос - Верховный алгоритм: как машинное обучение изменит наш мир - бесплатно ознакомительный отрывок. Жанр: foreign_edu, издательство Литагент МИФ без БК, год 2016. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Верховный алгоритм: как машинное обучение изменит наш мир
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-00100-172-0
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Педро Домингос - Верховный алгоритм: как машинное обучение изменит наш мир краткое содержание

Верховный алгоритм: как машинное обучение изменит наш мир - описание и краткое содержание, автор Педро Домингос, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Машинное обучение преображает науку, технологию, бизнес и позволяет глубже узнать природу и человеческое поведение. Программирующие сами себя компьютеры – одна из самых важных современных технологий, и она же – одна из самых таинственных.
Ученый-практик Педро Домингос приоткрывает завесу и впервые доступно рассказывает о машинном обучении и о поиске универсального обучающегося алгоритма, который сможет выуживать любые знания из данных и решать любые задачи. Чтобы заглянуть в будущее и узнать, как машинное обучение изменит наш мир, не нужно специального технического образования – достаточно прочитать эту книгу.
На русском языке публикуется впервые.

Верховный алгоритм: как машинное обучение изменит наш мир - читать онлайн бесплатно ознакомительный отрывок

Верховный алгоритм: как машинное обучение изменит наш мир - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Педро Домингос
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако от больших данных нет пользы, если их нельзя превратить в знание, и в мире слишком мало ученых, чтобы справиться с этой задачей. В свое время Эдвин Хаббл [11] Эдвин Пауэлл Хаббл (Edwin Powell Hubble, 1889–1953) – один из наиболее влиятельных астрономов и космологов XX века, внесший решающий вклад в понимание структуры космоса. Член Национальной академии наук в Вашингтоне с 1927 года. открывал новые галактики, скрупулезно изучая фотографические пластинки, но можно ручаться, что таким способом не получилось бы найти полмиллиарда небесных тел, которые нам подарил проект Digital Sky Survey, – это было бы подобно ручному подсчету песчинок на пляже. Конечно, можно вручную написать правила, чтобы отличить галактики от звезд и шумов (например, птиц, самолетов или пролетающего мимо Супермена), но они будут не очень точными. Поэтому в проекте SKICAT, посвященном анализу и каталогизации изображений неба, был применен обучающийся алгоритм. Получив пластинки, где объектам уже были присвоены правильные категории, он разобрался, что характеризует каждую из них, а затем применил результаты ко всем необозначенным пластинкам. Эффективность превзошла все ожидания: алгоритм сумел классифицировать объекты настолько слабые, что человек не смог бы их выявить, и таких оказалось больше всего.

Благодаря большим данным и машинному обучению можно понять намного более сложные феномены, чем до появления этих факторов. В большинстве дисциплин ученые традиционно пользовались только очень скромными моделями, например линейной регрессией, где кривая, подобранная к данным, – всегда прямая линия. К сожалению (а может, и к счастью, потому что иначе жизнь была бы очень скучной – вообще говоря, никакой жизни бы и не было), большинство феноменов в мире нелинейны, и машинное обучение открывает перед нами огромный мир нелинейных моделей: это все равно что включить свет в комнате, которую до того освещала лишь Луна.

В биологии алгоритмы машинного обучения разбираются, где в молекуле ДНК расположены гены, какие фрагменты РНК вырезают при сплайсинге [12] Процесс вырезания определенных нуклеотидных последовательностей из молекул РНК и соединения последовательностей, сохраняющихся в «зрелой» молекуле, в ходе процессинга РНК. перед синтезом белка, как белки принимают характерную для них форму и как заболевания влияют на экспрессию разных генов. Вместо того чтобы тестировать в лаборатории тысячи новых лекарств, обучающийся алгоритм спрогнозирует, будут ли они эффективны, и допустит до этапа тестирования только самые перспективные. Алгоритмы будут отсеивать молекулы, которые, скорее всего, вызовут неприятные побочные эффекты, например рак. Это позволит избежать дорогих ошибок, к примеру, когда лекарство запрещают только после начала испытаний на человеке.

Однако самый большой вызов – это собрать всю эту информацию в единое целое. Какие факторы усугубляют риск сердечных заболеваний и как они между собой взаимодействуют? Все, что было нужно Ньютону, – это три закона движения и один гравитации, однако одиночке открыть полную модель клетки, организма и общества не под силу. По мере роста объема знаний ученые все больше специализируются на какой-то области, но никто не способен собрать все части воедино, потому что элементов просто слишком много. Они сотрудничают друг с другом, но язык – очень медленное средство общения. Ученые пытаются быть в курсе других исследований, однако объем публикаций настолько велик, что они все больше и больше отстают, и зачастую повторить эксперимент проще, чем найти статью, в которой он описан. Машинное обучение и здесь приходит на помощь: оно просеивает литературу в поисках соответствующей информации, переводит специальный язык одной дисциплины на язык другой и даже находит связи, о которых ученые и не подозревали. Машинное обучение все больше напоминает гигантский хаб [13] Хаб (англ. hub, буквально – ступица колеса, центр) – в общем смысле узел какой-то сети. , через который методики моделирования, изобретенные в одной области, пробиваются в другие.

Если бы не изобрели компьютеры, наука застряла бы во второй половине ХХ столетия. Возможно, ученые заметили бы это не сразу и работали бы над все еще возможными небольшими успехами, но потолок прогресса был бы несравнимо ниже. Аналогично без машинного обучения многие науки в ближайшие десятилетия столкнулись бы с проблемой ослабевающей отдачи.

Чтобы увидеть будущее науки, загляните в лабораторию Манчестерского института биотехнологий, где трудится робот по имени Адам. Ему поручено определить, какие гены кодируют ферменты дрожжей. В распоряжении Адама есть модель метаболизма дрожжевой клетки и общие знания о белках и генах. Он выдвигает гипотезы, разрабатывает эксперименты для их проверки, сам проводит опыты, анализирует результаты и выдвигает новые гипотезы, пока не будет удовлетворен. Сегодня ученые все еще независимо проверяют выводы Адама, прежде чем ему поверить, но уже завтра проверкой этих гипотез займутся роботы.

Миллиард Клинтонов

На президентских выборах 2012 года судьбу Соединенных Штатов определило машинное обучение. Традиционные факторы: взгляды на экономику, харизма и так далее – у обоих кандидатов оказались очень схожи, и исход выборов должен был определиться в ключевых колеблющихся штатах. Кампания Митта Ромни шла по классической схеме: опросы, объединение избирателей в крупные категории и выбор важнейших целевых групп. Нил Ньюхауз, специалист по общественному мнению в штабе Ромни, утверждал: «Если мы сможем победить самовыдвиженцев в Огайо, то выиграем гонку». Ромни действительно победил с перевесом в семь процентов, но все равно проиграл и в штате, и на выборах.

Барак Обама назначил главным аналитиком своей кампании Раида Гани, эксперта по машинному обучению. Гани удалось провести величайшую аналитическую операцию в истории политики. Его команда свела всю информацию об избирателях в единую базу данных, дополнила ее сведениями из социальных сетей, маркетинга и других источников и приступила к прогнозированию четырех факторов для каждого отдельного избирателя: насколько вероятно, что он поддержит Обаму, придет на выборы, отзовется на напоминание это сделать и изменит мнение об этих выборах после бесед на определенные темы. На основе этих моделей каждый вечер проводилось 66 тысяч симуляций выборов, а результаты использовались, чтобы управлять армией волонтеров: кому звонить, в какие двери стучать, что говорить.

В политике, как в бизнесе и на войне, нет ничего хуже, чем смотреть, как противник делает что-то непонятное, и не знать, как на это ответить, пока не станет слишком поздно. Именно это произошло с Ромни. В его штабе видели, что соперники покупают рекламу на конкретных каналах кабельного телевидения в конкретных городах, но почему – было неясно. «Хрустальный шар» оказался слишком мутным. В результате Обама выиграл во всех ключевых штатах за исключением Северной Каролины, причем с б о льшим перевесом, чем предсказывали даже самые авторитетные специалисты по общественному мнению. А наиболее авторитетные специалисты (например, Нейт Сильвер [14] Натаниель (Нейт) Сильвер (Nathaniel (Nate) Silver, род. 1978) – аналитик, стал известен в 2000‑х годах предсказаниями результатов соревнований по бейсболу, а затем и политических выборов. ), в свою очередь, использовали самые сложные методики прогнозирования. Их предсказания не сбылись, потому что у них было меньше ресурсов, чем у штаба Обамы, но и они оказались намного точнее, чем традиционные эксперты, чьи предсказания были основаны на собственных знаниях и опыте.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Педро Домингос читать все книги автора по порядку

Педро Домингос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Верховный алгоритм: как машинное обучение изменит наш мир отзывы


Отзывы читателей о книге Верховный алгоритм: как машинное обучение изменит наш мир, автор: Педро Домингос. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x