Авинаш Диксит - Стратегические игры. Доступный учебник по теории игр
- Название:Стратегические игры. Доступный учебник по теории игр
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2017
- Город:Москва
- ISBN:978-5-00100-813-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Авинаш Диксит - Стратегические игры. Доступный учебник по теории игр краткое содержание
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
На русском языке публикуется впервые.
Стратегические игры. Доступный учебник по теории игр - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Однако большинство из вас знают, как в худшем случае добиться хотя бы ничьей в игре в крестики-нолики на поле три на три. Так что есть простое решение этой игры, которое можно найти посредством обратных рассуждений, и истинный стратег способен существенно снизить сложность игры в ходе его поисков. Оказывается, как и в версии игры «два на два», многие возможные пути на дереве игры со стратегической точки зрения идентичны. В частности, девять начальных ходов могут быть только трех типов: вы ставите крестик на угловую позицию (четыре возможных варианта), на боковую позицию (также четыре возможных варианта) и на центральную позицию (один вариант). Использование этого метода для упрощения дерева игры поможет снизить уровень сложности задачи и приведет вас к описанию оптимальной равновесной стратегии, полученной методом обратных рассуждений. К примеру, мы могли бы показать, что игрок, который ходит вторым, может гарантированно добиться как минимум ничьей, сделав надлежащий первый ход и постоянно блокируя в дальнейшем попытки первого игрока выставить три символа в ряд [24].
Хотя сравнительно простые игры, такие как крестики-нолики, решаемы методом обратных рассуждений, выше мы показали, насколько быстро повышается сложность дерева игры даже в играх с двумя участниками. Поэтому при анализе более сложных игр вроде шахмат находить полное решение становится гораздо труднее.
В шахматах в распоряжении игроков (условно называемых «белые» и «черные») имеются наборы из 16 фигур разной формы, которые передвигаются по шахматной доске восемь на восемь клеток (рис. 3.8) в соответствии с заданными правилами [25]. Белые ходят первыми, черные – вторыми, и так далее по очереди. Все ходы видны другому игроку, и ничего не оставлено на волю случая, как в карточных играх, где карты перетасовываются и сдаются. Кроме того, шахматная партия должна заканчиваться за конечное число ходов. Согласно правилам, при троекратном повторении одной и той же позиции в течение игры объявляется ничья. Ввиду наличия конечного количества способов разместить 32 фигуры (или меньше, если некоторые фигуры побиты) на 64 клетках шахматной доски, партия не может продолжаться бесконечно долго без возникновения подобной ситуации. Поэтому в принципе шахматы поддаются полному анализу методом обратных рассуждений.

Рис. 3.8.Шахматная доска
Однако этот анализ так и не проведен. Шахматы не «решены» так, как в свое время крестики-нолики, а причина в том, что, несмотря на простоту правил, шахматы – чрезвычайно сложная игра. Из начальной позиции набора фигур, показанных на рис. 3.8, белые могут сделать любой из 20 ходов [26], а черные – ответить любым из 20 ходов. Следовательно, из первого узла исходят 20 ветвей, каждая ведет ко второму узлу, из которого исходят еще 20 ветвей. Всего после двух ходов образуется 400 ветвей, и каждая ведет к узлу, из которого исходят очередные ветви. Общее же количество возможных ходов в шахматах составляет, по примерным оценкам, 10 120, то есть единицу со 120 нулями. Суперкомпьютеру, в тысячу раз превышающему ваш ПК по быстродействию и выполняющему один триллион операций в секунду, понадобилось бы более 10 100 лет, чтобы проверить все ходы [27]. Астрономы отводят нам менее 10 10 лет до того момента, когда Солнце превратится в красный гигант и поглотит Землю.
Получается, что хотя для игры в шахматы теоретически можно найти всеобъемлющее решение методом обратных рассуждений, ее полное дерево может оказаться слишком сложным для того, чтобы реализовать такое решение на практике. Что делать игроку в данной ситуации? Знакомство с историей попыток запрограммировать компьютер на игру в шахматы поможет нам многое об этом узнать.
Когда стало ясно, что компьютеры способны выполнять сложные вычисления в науке и бизнесе, многие математики и программисты решили, что вскоре компьютерная шахматная программа победит именитых гроссмейстеров. Но это произошло не так быстро, хотя компьютерные технологии развивались стремительными темпами, тогда как человеческое мышление несколько поотстало. В конце концов в декабре 1992 года немецкая компьютерная программа под названием Fritz2 выиграла у чемпиона мира Гарри Каспарова несколько блицпартий. Согласно обычным правилам, каждому игроку предоставляется 2,5 часа на выполнение 40 ходов, и люди дольше удерживали превосходство. Команда специалистов, финансируемая компанией IBM, вложила немало усилий и ресурсов в разработку специализированного компьютера (получившего название Deep Blue) для игры в шахматы и соответствующего программного обеспечения. В феврале 1996 года Deep Blue выступил в роли противника Гарри Каспарова в матче из шести партий и произвел сенсацию, выиграв первую партию, но Каспаров быстро выявил его слабые места, улучшил контрстратегии и мастерски выиграл остальные партии. На протяжении следующих 15 месяцев команда IBM совершенствовала аппаратное и программное обеспечение компьютера, после чего в мае 1997 года модифицированный Deep Blue выиграл у Каспарова очередной матч из шести партий.
Таким образом, развитие компьютерных технологий характеризовалось сочетанием периодов медленного поэтапного улучшения и ряда стремительных рывков, в то время как люди, сохранив определенное превосходство, не смогли перестроиться настолько быстро, чтобы удержать передовые позиции. При ближайшем рассмотрении оказалось, что люди и компьютеры используют абсолютно разные подходы к анализу очень сложного дерева игры в шахматы.
При обдумывании хода в шахматах крайне трудно (для обоих: и людей, и компьютеров) заранее предвидеть исход игры. Но как насчет того, чтобы просчитать часть ходов, скажем 5−10, вперед и проанализировать игру в обратном порядке из этой позиции? Игра необязательно должна закончиться в рамках этого ограниченного периода; иными словами, узлы, которых вы достигнете через 5−10 ходов, не будут концевыми. Однако в соответствии с правилами игры выигрыши указываются только для концевых узлов. Следовательно, необходим некий косвенный способ присвоения правдоподобных выигрышей неконцевым узлам, поскольку вы не можете проанализировать все дерево игры методом обратных рассуждений с самого конца. Правило, согласно которому присваиваются промежуточные выигрыши, называется функцией промежуточной оценки.
В шахматах и люди, и компьютерные программы используют такой частичный упреждающий анализ в сочетании с функцией промежуточной оценки. Классический метод присваивает определенные значения каждой фигуре, а также позиционным и комбинационным преимуществам, которые могут возникнуть в процессе игры. Количественная оценка значений для различных позиций производится на основе опыта игры, накопленного всем шахматным сообществом в ходе прошлых партий, начинавшихся с соответствующих позиций или комбинаций; этот опыт называется знанием. Сумма всех числовых значений, закрепленных за шахматными фигурами и их комбинациями на той или иной позиции, и есть ее промежуточная оценка. Целесообразность хода определяется по оценке позиции, на которую предположительно выйдет игра после точного упреждающего вычисления конкретного количества (например, пяти или шести) ходов.
Читать дальшеИнтервал:
Закладка: