Джулия Шоу - Ложная память. Почему нельзя доверять воспоминаниям
- Название:Ложная память. Почему нельзя доверять воспоминаниям
- Автор:
- Жанр:
- Издательство:Литагент Аттикус
- Год:неизвестен
- ISBN:978-5-389-13217-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джулия Шоу - Ложная память. Почему нельзя доверять воспоминаниям краткое содержание
Джулия Шоу
Ложная память. Почему нельзя доверять воспоминаниям - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Помню, как один из моих университетских преподавателей очень запоминающимся образом продемонстрировал принцип работы синапсов и соединенных с ними клеток. Он встал посередине аудитории, в которой находилось около 200 студентов, и терпеливо дождался, когда мы сконцентрируем на нем свое внимание.
«Я – нейрон», – констатировал он. Он раскинул руки в стороны, словно изображая букву Т: «Это мои дендриты». Потом он раскрыл ладони, которые до тех пор были сжаты в кулаки, и напряг пальцы: «Это ответвления на моих дендритах». Он подозвал одного из студентов и попросил его встать рядом в такой же позе. Он поднес кончики пальцев к ладони соседа, оставив между ними крошечный промежуток: «А это мои синапсы». В конце концов он пожал руку рядом стоящего студента, показывая, как импульс передается от одного нейрона к другому.
В человеческом мозге насчитывается около 86 миллиардов рабочих нейронов, поэтому запись воспоминания это скорее процесс создания и настройки связей между уже существующими клетками, чем формирование новых нейронов. Хотя все составляющие нейронных связей могут меняться, большинство ученых считают, что наибольшую роль в создании воспоминаний играют синапсы.
Долговременная потенциация – это усиление синаптической передачи между двумя нейронами, происходящее из-за того, что нейроны систематически активизируются по отношению друг к другу. Предположим, например, что вы находитесь на пляже в Испании и впервые за несколько лет можете по-настоящему расслабиться. В этой ситуации активизируются нейроны в «пляжной» сети, а также в сетях «Испания» и «отдых». Если переживаемый опыт достаточно сильно активизирует эти связи или же это происходит благодаря похожему, регулярно повторяющемуся опыту, между этими нейронными сетями установится прочная связь. То есть ваша ассоциативная память свяжет, к примеру, понятия «Испания», «пляж» и «отдых».
Мишель Бодри – один из самых выдающихся исследователей в этой области, заложивших основы нашего понимания биохимической природы воспоминаний [54] Baudry M., Bi X., Gall C. & Lynch G. (2011). The biochemistry of memory: The 26 year journey of a ‘new and specific hypothesis’. Neurobiology of learning and memory, 95 (2), 125–133.
. В 2011 г. он опубликовал обзор результатов 25 лет работы, проведенной совместно с группой ученых из Университета Южной Калифорнии. Они фактически свели изучение биохимической природы памяти к двум вещам: исследованию процесса под названием «долговременная потенциация» и влиянию веществ кальпаинов – кальций-чувствительных протеаз. Бодри и его коллеги утверждают, что кальций необходим для стимуляции протеинов, которые позволяют синапсам претерпевать долгосрочные изменения, имеющие отношение к памяти. Когда связь между двумя нейронами регулярно и настойчиво активируется, как, например, связь между понятиями «парк» и «деревья», в этом конкретном месте активируются кальпаины. Затем они изменяют структуру синапсов, что приводит к образованию более сильной связи между активированными клетками памяти в мозге. Похоже, только когда в дело вступают кальпаины, мы можем наблюдать переход от простого новоприобретенного опыта к длительному воспоминанию.
Эрик Кандел – еще один исследователь, занимающийся этим феноменом. Я ни разу лично не встречалась с этим удивительным человеком, получившим Нобелевскую премию по медицине, одним из пионеров в мире исследований памяти. Однако я годами следила за его публикациями – читала его статьи, учебники, автобиографию и интервью. Поэтому мне кажется, будто я с ним знакома. Кандел впервые заинтересовался заднежаберными моллюсками в 1962 г., и вместе с коллегами и студентами из Колумбийского университета в Нью-Йорке он до сих пор продолжает исследовать представителей вида Aplysia. Термин Aplysia образовался в результате слияния древнегреческих слов, означавших «море» и «заяц». Этих крупных слизняков, похожих на улиток без раковин, назвали морскими зайцами из-за небольших рожек на головах, которые напоминают заячьи уши.
Кандел избрал аплизий в качестве объекта исследования, потому что они пользуются простой системой нейронов, чтобы запоминать переживаемый опыт и реагировать на него. Например, если в условиях эксперимента ущипнуть аплизию за жабру, она может научиться ее втягивать. Участвующие в процессе нейроны можно изолировать и извлечь, и растут они с огромной скоростью. В лабораторных условиях их можно сохранять живыми вне мозга хозяина in vitro , поместив их в жизнеобеспечивающую кислородосодержащую жидкость.
Так как единственное назначение нейронов – образовывать связи и формировать мозг, изолированные нейроны немедленно начинают искать другие нейроны, с которыми можно было бы взаимодействовать. Для этого они отращивают более длинные дендриты и дополнительные синапсы. По словам Кандела [55] http://www.genomenewsnetwork.org/articles/2004/01/09/memories.php
, «новые синапсы вырастают в течение дня прямо на ваших глазах». Этот удивительно быстрый рост нейронов, намного более быстрый, чем у людей, делает аплизий идеальными подопытными для исследования того, как внутри индивидуальных клеток и между ними образуются воспоминания. А так как люди фактически полагаются на такие же нейронные процессы, что и эти беспозвоночные, такие исследования напрямую связаны с изучением человеческой памяти.
За последние несколько десятилетий аплизии многому нас научили и помогли значительно расширить знания о работе памяти. Одно из самых недавних открытий, детально описанное в серии статей, опубликованных лабораторией Кандела в 2015 г. [56] Fioriti L., Myers C., Huang Y. Y., Li X., Stephan J. S., Kandel E. R. et al. (2015). The persistence of hippocampal-based memory requires protein synthesis mediated by the prion-like protein CPEB3. Neuron, 86 (6): 1433–1448. Stephan J. S., Fioriti L., Lamba N., Colnaghi L., Karl K., Derkatch I. L. & Kandel E. R. (2015). The CPEB3 protein is a functional prion that interacts with the actin cytoskeleton. Cell Reports, 11 (11): 1772–1785.
, заключается в том, что протеины, ответственные за работу долговременной памяти, отличаются от всех других видов протеинов. Это так называемые прионы.
Прионы, или белковые инфекционные частицы, могут менять форму, по-особому складываясь и видоизменяясь. Еще одно важное качество прионов состоит в том, что они могут либо существовать изолированно, либо образовывать цепи. Эти цепи вынуждают соседние клетки присоединяться, создавая физические связи. До появления новых данных в 2015 г. те, кто знал о существовании прионов, в первую очередь ассоциировали их с тяжелыми заболеваниями вроде болезни Альцгеймера или ГЭКРС (коровьим бешенством). У прионов была такая плохая репутация, что Кандел, предвидя негативную реакцию публики, написал: «Думаете, Бог создал прионы, только для того чтобы убивать?» [57] http://www.scientificamerican.com/article/prions-are-key-to-preserving-long-term-memories/
, прежде чем рассказал о их ключевой роли в работе памяти.
Интервал:
Закладка: