Владимир Жабцев - Электричество дома и на даче. Как сделать просто и надежно
- Название:Электричество дома и на даче. Как сделать просто и надежно
- Автор:
- Жанр:
- Издательство:Харвест
- Год:2010
- Город:Минск
- ISBN:978-985-16-9129-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Жабцев - Электричество дома и на даче. Как сделать просто и надежно краткое содержание
В издании представлена информация, как электрифицировать дом быстро, просто и, главное, надежно. В книге описаны основы электромонтажных работ: даны пошаговые инструкции по монтажу электропроводки, кабелей, других электроустановочных изделий, а также электрооборудования для водоснабжения и отопления дома. Кроме того, приведены советы по эксплуатации и ремонту домашних бытовых приборов и электроинструментов и правила техники безопасности при работе с ними.
Электричество дома и на даче. Как сделать просто и надежно - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Полупроводники бывают n -типа и р -типа. В полупроводниках первого типа содержатся такие примеси, атомы которых легко отдают свои электроны, тем самым увеличивая число свободных электронов в полупроводнике. В полупроводниках второго типа примеси способствуют образованию дырок, увеличивая дырочную проводимость. То есть можно сказать, что полупроводники бывают с электронной и дырочной проводимостью.
Если изготовить сплав из полупроводников разных типов, то на границе спая образуется р-n- переход. В случае прямого подключения такого полупроводника к электрической цепи (p-тип к положительному полюсу, а n- тип — к отрицательному), его проводимость будет высокой, а сопротивление — небольшим. При обратном включении (p-тип к отрицательному, а n- тип — к положительному) ток будет минимальным из-за большого сопротивления р-n- перехода.
Полупроводниковые приборы, преобразующие электрическую энергию и имеющие один р-n- переход и два вывода, называются диодами. Обычно диоды изготавливаются из германия, кремния и арсенида галлия. По назначению их подразделяют на выпрямительные, детекторные, переключательные, стабилизаторы напряжения, или стабилитроны.
Полупроводниковые выпрямители надежны в работе, имеют длительный срок службы. Их большим минусом является то, что они имеют ограничения по температуре, т. е. работают в интервале от -70 до +125 °C.
Если полупроводник осветить большим количеством света, то его электрическая проводимость возрастет в разы. Это произойдет за счет разрыва связей и образования свободных электронов и дырок. Такое явление называется фотоэлектрическим эффектом. Приборы, действие которых основано на фотоэлектрическом эффекте, называются фоторезисторами или фотосопротивлениями. Положительными качествами фоторезисторов являются миниатюрность размеров, высокая чувствительность при замерах и т. д. Эти качества дают возможность использовать данные устройства во многих областях науки и техники для учета и измерения слабых световых потоков. Фоторезисторы применяют для определения качества поверхностей, контроля размеров изделий и пр. Они представляют собой полупроводниковый прибор с двумя р-n- переходами. Для пояснения принципа работы рассмотрим один из видов транзисторов, изготовленный из германия или кремния с добавлением донорных и акцепторных примесей. Примеси распределены таким образом, что между двумя слоями полупроводника p-типа возникает очень тонкая прослойка полупроводника n- типа.
Вышеуказанная тонкая прослойка называется основанием или базой. В полупроводнике образуются два р-n- перехода, прямые направления которых противоположны. Наличие трех выводов от областей с разными типами проводимости дает возможность использовать транзисторы во многих электрических схемах. В настоящее время транзисторы очень широко распространены в радио- и электротехнике.
Аккумуляторы
Приборы, способные накапливать и длительное время хранить электрическую энергию называются аккумуляторами. Работа этих устройств основана на принципе обратимости химических реакций. Самыми распространенными считаются кислотные аккумуляторы. Пластины аккумулятора изготавливаются из свинца в виде решеток и покрываются активной массой. Пластины, являющиеся положительным полюсом аккумулятора, представляют собой ряд скрепленных между собой параллельных, поставленных вертикально ребер, которые образуют ячейки. В эти ячейки укладывается активная масса, состоящая из оксида свинца. Отрицательные пластины выполняются в виде свинцовой решетки с ячейками, заполненными активной массой из чистого свинца. В качестве раствора в аккумуляторах используется серная кислота, растворенная в воде. Каждый аккумулятор имеет свой паспорт, в котором указываются предельные значения силы тока при зарядке и разрядке.
Электрические лампы накаливания
Лампы накаливания предназначены для освещения помещений в темное время суток. Принцип действия ламп основан на свечении нагретых током проводников. Лампа состоит из стеклянной колбы, из которой откачан воздух, и металлического цоколя. Внутри колбы на специальных крючках закреплена нить накаливания, выполненная из тугоплавкого металла (вольфрам, осмий, тантал и пр.) или сплавов тугоплавких металлов. Концы нити накаливания припаяны к двум тонким проволокам. Один наружный конец этих проволок припаян к металлическому цоколю, а другой — к винтовой нарезке. Как правило, нить накаливания разогревается до температуры в 2000 °C. Это явление позволяет лампе ярко светиться.
Бывают лампы, имеющие в колбе газ, не поддерживающий горения. Для этих целей обычно применяют азот или аргон. Газ в колбе нужен для того, чтобы нить накаливания как можно дольше не распылялась при разогреве. Это дает возможность поднимать температуру накаливания нити до 2900 °C. На каждой лампе имеется соответствующая маркировка, в которую входят цифры, указывающие напряжение лампы и потребляемую ею мощность.
Люминесцентные лампы
В производстве люминесцентных ламп вместо колб используют стеклянные трубки, покрытые изнутри люминофором. С двух концов в трубке имеются вольфрамовые спирали, впаянные в трубку. На спирали нанесена специальная оксидная паста, дающая возможность электронам покидать спирали. Внутри стеклянная трубка заполнена парами ртути и аргоном. Длина и диаметр трубки зависят от напряжения и мощности лампы. Кроме этого, в лампе имеется стартер, представляющий собой ионное реле, выполненное в виде двух электродов, запаянных в наполненную неоном колбу. Один из электродов стартера — биметаллическая пластина.
После того как лампа включена в сеть, между электродами стартера возникает разряд, нагревающий биметаллическую пластину. Нагреваясь, она изгибается и замыкает второй контакт. Ток, проходящий по цепи, нагревает электроды лампы до температуры 800—1000 °C. Биметаллическая пластина в этот момент остывает, выпрямляется, и цепь размыкается. Для того чтобы в момент размыкания цепи между электродами возникла большая эдс самоиндукции, создающая электрический разряд в парах аргона и ртути, используется дроссель. Но при всей своей пользе дроссель понижает КПД лампы. Для того чтобы избежать этого, используют конденсатор емкостью от 4 до 8 мкФ. При этом КПД возрастает до 95 %.
Для погашения помех в радиоаппаратуре, возникающих в связи с работой люминесцентной лампы, в электрическую цепь включают (параллельно стартеру) конденсатор емкостью 0,06 мкФ. Люминесцентные лампы рассчитаны на напряжение 220 В мощностью 30, 40, 80 и 125 Вт.
Электротехнические изделия и материалы
Интервал:
Закладка: