Мартин Гарднер - Математические чудеса и тайны
- Название:Математические чудеса и тайны
- Автор:
- Жанр:
- Издательство:Наука
- Год:1978
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мартин Гарднер - Математические чудеса и тайны краткое содержание
Математические чудеса и тайны - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
«Первый курьез» основан на теореме Ферма. Для одного лишь описания способа его демонстрации потребовалось 13 страниц н дополнительно 52 страницы были заняты объяснением его сущности. И хотя Пейрс сообщает о «неизменном интересе и изумлении публики», вызываемом его фокусом, кульминационный эффект этого фокуса представляется настолько не соответствующим сложности приготовлений, что трудно поверить, что зрители не погружались в сон задолго до окончания его демонстрации.
Вот пример того, как в результате видоизменения способа демонстрации одного старого фокуса необычайно возросла его занимательность.
Шестнадцать карт раскладываются на столе лицевой стороной кверху в виде квадрата по четыре карты в ряд. Кому-нибудь предлагается задумать одну карту и сообщить показывающему, в каком вертикальном ряду она лежит. Затем карты собираются правой рукой по вертикальным рядам и последовательно складываются в левую руку. После этого карты снова раскладываются в виде квадрата последовательно по горизонталям; таким образом, карты, лежавшие при первоначальной раскладке в одном и том же вертикальном ряду, теперь оказываются в одном к том же горизонтальном ряду. Показывающему нужно запомнить, в каком из них лежит теперь задуманная карта. Далее зрителя просят еще раз указать, в каком вертикальном ряду он видит свою карту, Понятно, что после этого показывающий может сразу же указать задуманную карту, которая будет лежать на пересечении только что названного вертикального ряда и горизонтального ряда, в котором, как известно, она должна находиться. Успех этого фокуса, конечно, зависит от того, следит ли зритель за процедурой настолько внимательно, чтобы распознать суть дела.
Пять кучек карт
А теперь расскажем, как этот же самый принцип используется в другом случае.
Показывающий усаживается за стол вместе с четырьмя зрителями. Он сдает каждому (включая себя) по пяти карт, предлагает всем посмотреть их и одну задумать. Затем собирает карты, раскладывает их на столе в пять кучек и просит кого-нибудь указать ему одну из них. Далее берет эту кучку в руки, раскрывает карты веером, лицевой стороной к зрителям, и спрашивает, видит ли кто-нибудь из них задуманную карту. Если да, то показывающий (так и не заглянув ни разу в карты) сразу же ее вытаскивает. Эта процедура повторяется с каждой из кучек, пока все задуманные карты не будут обнаружены. В некоторых кучках задуманных карт может вовсе не оказаться, в других же их может быть две и более, но в любом случае карты отгадываются показывающим безошибочно.
Объясняется этот фокус просто. Пятерки карт нужно собирать начиная от первого зрителя, сидящего слева от вас, и далее по часовой стрелке (карты держат лицевой стороной книзу); карты показывающего будут при этом последними и окажутся сверху пачки. Затем все карты раскладываются в кучки по пяти карт в каждой. Любая из кучек может быть открыта зрителям.
Теперь, если задуманную карту видит зритель номер два, то эта карта будет второй, считая сверху кучки.
Если свою карту видит четвертый зритель, она будет четвертой в кучке. Иными словами, местоположение задуманной карты в кучке будет соответствовать номеру зрителя, считая слева направо вокруг стола (т, е. по часовой стрелке). Это правило имеет силу для любой кучки.
После небольшого размышления становится ясным, что в рассматриваемом фокусе, точно так же как и в предыдущем, применяется один и тот же принцип с пересечением рядов. Однако в последней варианте «пружинка» замаскирована гораздо лучше, благодаря чему получается значительно больший внешний эффект.
На ближайших страницах мы остановимся на тех фокусах, которые могут показаться более оригинальными или занимательными; при этом мы постараемся проиллюстрировать как можно больше математических принципов, на которых они могут быть основаны.
Карты как счетные единицы
Здесь мы рассмотрим только те фокусы, в которых карты используются как однородные предметы независимо от того, что изображено на их лицевой стороне.
Собственно, здесь нам подошел бы любой набор небольших предметов, например камешков, спичек или монет, однако лучше всего воспользоваться все-таки картами, потому что их удобнее держать в руках и считать.
Угадывание числа карт, снятых с колоды
Показывающий просит кого-нибудь из зрителей снять небольшую пачку карт сверху колоды, после чего сам тоже снимает пачку, но с несколько большим количеством карт. Затем он пересчитывает свои карты.
Допустим, их двадцать. Тогда он заявляет: «У меня больше, чем у вас, на четыре карты и еще столько, чтобы досчитать до шестнадцати». Зритель считает свои карты. Допустим, их одиннадцать. Тогда показывающий выкладывает свои карты по одной на стол.
Считая при этом до одиннадцати. Затем в соответствии со сделанным им утверждением откладывает четыре карты в сторону и продолжает класть карты, считая далее; 12, 13, 14, 15, 16. Шестнадцатая карта будет последней, как он и предсказывал.
Фокус можно повторять снова и снова, причем число откладываемых в сторону карт нужно все время менять, например одни раз их может быть три, другой — пять и т. д. При этом кажется непонятным, как показывающий может угадать разницу в числе карт, не зная числа карт, взятых зрителем.
Объяснение. В этом тоже несложном фокусе показывающему совсем не нужно знать числа карт, имеющихся на руках у зрителя, но он должен быть уверенным, что взял карт больше, чем зритель. Показывающий считает свои карты; в нашем примере их двадцать. Затем произвольно берет какое-нибудь небольшое число, скажем четыре, и отнимает его от 20; получается 16. Затем показывающий говорит: «У меня больше, чем у вас, на четыре карты и еще столько, чтобы досчитать до шестнадцати». Карты пересчитываются, как это объяснялось выше, и утверждение оказывается справедливым [2] Предположим, что у зрителя имеется k карт, у показывающего N > k карт; пусть, далее, выбрано число m < N . Очевидное равенство N = k + m + (N — k — m) является математическим эквивалентом утверждения, показывающего: «у меня имеется на m карт больше, чем у зрителя, и еще столько, чтобы от числа карт зрителя ( k ) досчитать до числа N — m». Число m следует выбирать маленьким; если m + k будет больше, чем N , то разность N — k — m окажется отрицательной.
).
Использование числовых значений карт
Фокус с четырьмя картами
Колода карт тасуется зрителем. Показывающий кладет ее в карман и просит кого-либо из присутствующих назвать вслух любую карту. Предположим, что будет названа дама пик. Тогда он опускает руку в карман и достает какую-то карту пиковой масти; это, поясняет он, указывает масть названной карты. Затем он вытаскивает четверку и восьмерку, что дает в сумме 12 — числовое значение дамы.
Читать дальшеИнтервал:
Закладка: