Дэйв Эспри - Биохакинг мозга
- Название:Биохакинг мозга
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2018
- Город:Москва
- ISBN:9785001176312
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэйв Эспри - Биохакинг мозга краткое содержание
Представили?
Это реально. В этой книге вы найдете эффективную программу прокачки организма. Вы узнаете, какие продукты должны присутствовать в вашем рационе и каких следует избегать, какие виды физической активности необходимо добавить в распорядок дня, как правильно организовать рабочее пространство, а еще о добавках, детоксе для дома и тела, медитации и дыхательных практиках, позволяющих мозгу всего за две недели заработать на все 100 %.
Биохакинг мозга - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
• Если у вас проблемы с энергией, проверьте у специалиста уровни гормонов щитовидной железы.
• Если вы чувствуете упадок сил сразу после обеда, проверьте уровень сахара либо с помощью персонального глюкометра, либо обратившись к специалисту.
• Обращайте внимание: если в течение дня вы вдруг ощущаете падение уровня энергии, возможно, вы съели что-то не то или подверглись воздействию иных факторов, которые повредили ваши митохондрии!
3. Станьте нейромастером
Управляйте своими нейронами
Вероятно, о нейронах вы узнали на уроках биологии в средней школе и с тех пор, скорее всего, не вспоминали о них. В то время ваш учитель, возможно, описывал работу нейронов как соединение с другими нейронами для формирования так называемых нейронных сетей. Но я уверен, что вам не рассказывали: от того, как нейроны действуют и связываются друг с другом, зависит, насколько быстро вы думаете, реагируете и даже учитесь. А еще о том, что нейроны играют огромную роль в повседневных делах. И о том, что вы хотя бы частично, но контролируете этот процесс. Потому что, как выясняется, вы можете многое изменить в том, как они работают сейчас и как будут работать в долгосрочной перспективе.
Почему нейроны так легко взломать, чтобы увеличить свою производительность? По двум причинам [18] Zu-Hang Sheng, “Mitochondrial Trafficking and Anchoring in Neurons: New Insight and Implications,” Journal of Cell Biology 204, no. 7 (March 31, 2014): 1087, DOI: 10.1083/jcb.201312123 .
.
Во-первых, нейроны — это пожирающие энергию чудеса клеточной инженерии. Один нейрон в мозге использует до 4,7 миллиарда молекул АТФ в секунду [19] Xiao-Hong Zhu et al., “Quantitative Imaging of Energy Expenditure in Human Brain,” Neuroimage 60, no. 4 (2012): 2107–2117.
. Когда ученые в порядке эксперимента изолировали нейроны и ограничили их потребление АТФ, работа нейронов стала непредсказуемой [20] R. Steven Stowers et al., “Axonal Transport of Mitochondria to Synapses Depends on Milton, a Novel Drosophila Protein,” Neuron 36, no. 6 (2002): 1063–1077, DOI: 10.1016/S0896-6273(02)01094-2 .; Xiufang Guo et al., “The GTPase dMiro Is Required for Axonal Transport of Mitochondria to Drosophila Synapses,” Neuron 47, no. 3 (2005): 379–393; Huan Ma et al., “KIF5B Motor Adaptor Syntabulin Maintains Synaptic Transmission in Sympathetic Neurons,” Journal of Neuroscience 29, no. 41 (2009): 13019–13029.
. Фактически нейроны могут даже умереть, если у них нет постоянной подачи АТФ [21] David G. Nicholls and Samantha L. Budd, “Mitochon L. I. Garay et al., “Progesterone Down-Regulates Spinal Cord Inflammatory Mediators and Increases Myelination in Experimental Autoimmune Encephalomyelitis,” Neuroscience 226 (December 13, 2012): 40–50, DOI: 10.1016/j.neuroscience.2012.09.032 .
, поскольку все, что они делают, требует огромного объема энергии. Следовательно, если вы сможете увеличить выработку АТФ, то повысите и эффективность нейронов. Ведь вы же не хотите, чтобы результат их работы был непредсказуем?
Во-вторых, каждый нейрон состоит из крошечного центрального тела с отходящими от него отростками (подробнее об этом чуть позже). Эти микроскопические отростки могут тянуться на расстояние до девяноста сантиметров! Нейроны не только выполняют невероятно энергоемкие задачи, им еще и приходится делать это, преодолевая огромные расстояния. В нейронах есть два разных типа двигателя, предназначенных для перемещения митохондрий внутри клетки, и эти двигатели также нуждаются в энергии [22] Zu-Hang Sheng, “Mitochondrial Trafficking and Anchoring in Neurons: New Insight and Implications,” Journal of Cell Biology 204, no. 7 (March 31, 2014): 1087, DOI: 10.1083/jcb.201312123 .; Robert L. Morris and Peter J. Hollenbeck, “The Regulation of Bidirectional Mitochondrial Transport Is Coordinated with Axonal Outgrowth,” Journal of Cell Science 104, no. 3 (1993): 917–927; Gordon Ruthel and Peter J. Hollenbeck, “Response of Mitochondrial Traffic to Axon Determination and Differential Branch Growth,” Journal of Neuroscience 23, no. 24 (2003): 8618–8624.
. До 30 процентов митохондрий в нейронах перемещаются, чтобы лучше отдавать свою энергию [23] Jian-Sheng Kang et al., “Docking of Axonal Mitochondria by Syntaphilin Controls Their Mobility and Affects Short-Term Facilitation,” Cell 132, no. 1 (2008): 137–148.
, подобно резервным электрогенераторам, установленным на грузовики, которые едут туда, где в данный момент высока потребность в электричестве. Исследования показали, что существует связь между замедлением этих двигателей и вероятностью развития нейродегенеративных заболеваний [24] Zu-Hang Sheng and Qian Cai, “Mitochondrial Transport in Neurons: Impact on Synaptic Homeostasis and Neurodegeneration,” Nature Reviews Neuroscience 13, no. 2 (2012): 77–93.
.
Как и во всех других клетках вашего тела, нейроны окружает мембрана из крошечных жировых капель. Но по своему устройству нейроны отличаются от любой другой клетки. Учитывая, что одна из их задач — отправление и получение сигналов от других клеток, у нейронов есть уникальные клеточные образования, называемые дендритами и аксонами. Дендриты отходят от каждого нейрона, чтобы получать информацию из других клеток. Это «уши» нейронов, потому что именно они принимают сообщения из всех уголков организма. Аксоны же служат для отправки информации другим нейронам — это их «голос», потому что так они разговаривают. Но информация не просто передается непосредственно от аксона одного нейрона к дендриту другого. Существуют промежутки между нейронами — синапсы, через которые и передаются сообщения из одной клетки в другую. Синапсы используют биологически активные химические вещества, нейротрансмиттеры или нейромедиаторы, и, как вы уже, наверное, догадались, много-много митохондрий, чтобы обеспечивать этот процесс.
Цикл отправки сообщения из аксона одного нейрона в синапс, а затем в дендриты другого нейрона составляет основу работы мозга. По сути, это химический и электрический процесс. Когда нейрон находится в состоянии покоя, внутри него содержится отрицательный заряд, а снаружи — положительный. Клеточная мембрана разделяет положительные и отрицательные заряды, избирательно позволяя ионам (заряженным атомам таких веществ, как кальций, натрий, хлор и калий) перемещаться внутрь и наружу клетки. Отрицательно заряженные ионы внутри клетки не выпускаются наружу, тогда как положительно заряженные могут свободно перемещаться туда и обратно через клеточную мембрану. Этот баланс удерживает нейрон отрицательно заряженным, за исключением тех случаев, когда ему приходит время действовать.
Если нейрону необходимо отправить сигнал другому нейрону, его клеточная мембрана дает возможность положительно заряженным ионам попасть внутрь, что изменяет заряд с отрицательного на положительный и позволяет отправить электрический сигнал по аксону. После этого мембрана вновь приступает к работе, восстанавливая отрицательный заряд, откачивая положительные ионы из клетки и оставляя внутри отрицательные. Как только нейрон спокойно зарядится до отрицательного состояния, он снова будет готов «выстрелить» сообщением.
Интересно, что нейроны не могут срабатывать по чуть-чуть. Каждый раз, когда один из них отправляет сигнал, он делает это на полную катушку. Так происходит для того, чтобы посылаемый сигнал не ослабевал при прохождении через аксон и синапс, гарантированно достиг дендритов другого нейрона и был услышан. По крайней мере, так это работает, когда аксоны имеют достаточную защиту из жирового покрытия — миелиновую оболочку. (Мы вскоре рассмотрим, что вы можете предпринять, чтобы ваш организм вырабатывал больше миелина.) И, конечно же, в наличии должно быть достаточно АТФ, чтобы обеспечить энергией весь этот процесс.
Читать дальшеИнтервал:
Закладка: