Николай Друзьяк - Как продлить быстротечную жизнь
- Название:Как продлить быстротечную жизнь
- Автор:
- Жанр:
- Издательство:Издательство «Крылов»
- Год:2009
- Город:СПб.
- ISBN:978-5-9717-0531-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Николай Друзьяк - Как продлить быстротечную жизнь краткое содержание
Автор книги «Как продлить быстротечную жизнь» академик Одесской региональной академии наук Николай Друзьяк поставил перед собой задачу – добиться того, чтобы человеческая жизнь стала длинной и без болезней. Он внес существенный вклад в решение этой проблемы.
До сего времени мы знали, что на ухудшение здоровья влияют загрязненная среда, в которой мы проживаем (вода, воздух, отравленная пища с добавлением вредных трансжиров, нитратов), снижение активности иммунной системы, курение и т. д.
Но, как выяснил Николай Друзьяк, главную роль в возникновении заболеваний играет ощелачивание крови. Именно оно приводит к развитию разнообразных болезней.
Какие же из заболеваний излечиваются по методу академика Н.Г. Друзьяка?
Фактически все.
И это сенсация!
Как продлить быстротечную жизнь - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
АТФ – универсальное клеточное горючее
И снова мы возвращаемся к энергетике клетки. Вспомним, что клетка – это отдельный микромир, имеющий четкие границы, внутри которых существуют непрерывная химическая активность и непрерывный поток энергии. В переносе энергии от энергодающих химических реакций к процессам, идущим с потреблением энергии (которые собственно и составляют работу клетки), принимает участие АТФ (аденозинтрифосфат), выполняющий очень важную роль носителя энергии в биологических системах.
Как же образуется универсальное клеточное горючее – знаменитый АТФ?
Ответ на этот вопрос можно найти в статье Л. И. Верховского, имеющей символическое название «Кажется, рождается биопротоника» (Химия и жизнь. 1990. № 10). Вот что говорится в ней об энергетике клетки.
Известно, что наружная мембрана клеток поддерживает не только разность в концентрации отдельных веществ внутри и снаружи клеток, но также поддерживает и разность электрических потенциалов.
Предложенная лауреатом Нобелевской премии Питером Митчелом теория образования АТФ утверждает, что при окислении жиров и углеводов ферментами дыхательной цепи через мембрану переносятся электрические заряды, а затем созданный мембраной электрохимический градиент протонов используется другим ферментом – АТФ-синтетазой, которая присоединяет к АДФ (аденозиндифосфат) неорганический фосфат:
АДФ + Ф н<-> АТФ + Н 2О.
Эта реакция называется реакцией фосфорилирования, то есть реакцией переноса и присоединения еще одной фосфатной группы к АДФ. Последний отличается от АТФ тем, что в нем находятся две фосфатные группы, а в АТФ – три. На присоединение еще одной фосфатной группы к АДФ затрачивается энергия, которая и запасается в АТФ. Такое накопление энергии в АТФ достигается благодаря сопряжению реакции фосфорилирования с реакциями окисления. Получается, и это уже твердо установлено, что мембранный потенциал (а он возможен только при наличии достаточной концентрации ионов водорода в межклеточной жидкости, то есть при достаточном подкислении крови) – это связующее звено окисления и фосфорилирования. И поэтому своеобразная гипоксия клеток может возникать и при резко выраженном разобщении процессов окисления и фосфорилирования в дыхательной цепи. Потребление клетками кислорода при этом может даже возрастать, однако значительное увеличение доли энергии, рассеиваемой в виде тепла, приводит к энергетическому «обесцениванию» клеточного дыхания. Возникает относительная недостаточность биологического окисления, при которой, несмотря на высокую интенсивность функционирования дыхательной цепи, образование АТФ не покрывает потребности в них клеток, и последние находятся по существу в состоянии гипоксии.
Здесь я приведу любопытный пример. Никого из нас не удивляет тот факт, что в летнюю жару мы интенсивно потеем. И объяснение этому явлению у нас самое простое – так организм избавляется от избытка тепла, чтобы поддерживать постоянной температуру тела. Но почему у нас происходит перегрев тела даже в тех случаях, когда температура окружающей среды не превышает 37 °C и мы при этом не работаем, а просто сидим и отдыхаем? По-видимому, только потому, что внутри нашего организма постоянно происходит окисление (сгорание) жиров, белков или углеводов и какая-то часть выделяющейся при этом энергии идет на образование АТФ, а какая-то часть на подогрев нашего тела, причем, надо заметить, на невостребованный подогрев, который, естественно, ведет к перегреву. В таком случае нам приходится использовать все доступные нам меры для охлаждения тела (вспомните, как нам бывает неприятно, когда по недосмотру водителя трамвая в нем летом вдруг бывает включено отопление).
Но почему наш организм столь нерационально расходует свою энергию? Ответ на этот вопрос я нашел однажды жарким летним днем в электричке. Все пассажиры изнывали от жары, пот с них тек ручьями. А мне в это время было вполне комфортно. И только в этот момент я понял, что это такое (не в теории, а в реальной жизни) – сопряжение реакции окисления с реакцией фосфорилирования. У меня кислая реакция крови, и поэтому вся энергия, выделяющаяся при окислении той же глюкозы, расходуется только на образование АТФ, а на подогрев тела идет лишь очень незначительная часть. Поэтому перегрева организма у меня нет. А у людей со щелочной кровью происходит разобщение окисления с фосфорилированием, и значительная часть энергии идет не на образование АТФ, а на подогрев тела, даже если это уже и избыточный подогрев. Так случайно в электричке мною было сделано маленькое открытие. Но, оказывается, здесь и открывать нечего. Мудрый народ давно уже знает, что летом надо пить что-то кислое. В России, например, в жаркое время пьют квас, а в Казахстане – айран. Я долгое время жил в Казахстане и помню, как в жаркую пору мне помогал этот напиток.
Приведенная выше реакция синтеза – гидролиза АТФ говорит нам не только о том, как образуется АТФ, но и как из него высвобождается в нужный момент энергия. И управление этой реакцией и влево, и вправо осуществляется с помощью протонов, которые перекачиваются протонными насосами или внутрь клеток, или наружу из них. А эффективность работы этих насосов и энергообеспечение клеток при этом опять-таки будет зависеть от концентрации ионов водорода в крови.
Причина повышенной щелочности крови
Итак, мы пришли к выводу, что реакция крови, имеющая рН, равный 7,4, не является оптимальной. Это довольно щелочная кровь, и по этой причине она неблагоприятна для нашего организма.
А что же является причиной повышенной щелочности крови?
На первый взгляд кажется, что для необходимого уровня кислотности крови в ней нет достаточного количества углекислого газа. Именно к такому выводу и пришел автор метода ВЛГД и предложил нам задерживать в организме какую-то часть дополнительного углекислого газа. Но в действительности картина подкисления крови выглядит гораздо сложнее. Имеющегося в крови углекислого газа нам могло бы хватить для оптимального подкисления крови, если бы этому не препятствовала очень большая емкость буферной системы крови. Мы только что имели возможность убедиться в том, что для равновесного состояния между свободной угольной кислотой и гидрокабонатами, при котором рН крови будет равен 6,9, соотношение между СО 2и НСО 3 -должно быть равно 1: 2, а не 1: 6, каковым оно является при рН = 7,4. Поэтому легко понять, что при одном и том же уровне свободной угольной кислоты в крови кислотность крови можно повысить простым снижением в крови концентрации гидрокарбонат-ионов (НСО 3 -). Но как это сделать? И здесь нам никак не обойтись без рассмотрения такого понятия, как буферная система крови.
Читать дальшеИнтервал:
Закладка: