Неизвестен Автор - Курс общей астрономии
- Название:Курс общей астрономии
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Неизвестен Автор - Курс общей астрономии краткое содержание
Курс общей астрономии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
§ 113. Фотоэлектрические приемники излучения
Для увеличения точности фотометрии применяются фотоэлементы, устанавливаемые в фокусе телескопа. Кратко напомним физическую сущность фотоэлектрического эффекта. В металлах и полупроводниках, кроме электронов, связанных с отдельными атомами, имеются свободные электроны, которые могут перемещаться в пределах всей кристаллической решетки. Электрон может выйти из кристаллической решетки, если он приобретет энергию, превышающую определенную пороговую величину W0 . Эта величина называется работой выхода. Электрон может по-лучить энергию различными способами, например, поглотив световой квант. Кванты с энергией, большей W0 , могут выбивать электроны из поверхности облучаемого материала. Это явление называется внешним фотоэлектрическим эффектом или фотоэлектронной эмиссией. Не каждый квант с энергией, большей W0 , выбивает электрон. Процентная доля квантов, выбивающих электроны, называется квантовым выходом. Обычно квантовый выход меньше 50%. Явление внешней фотоэлектронной эмиссии используется в фотоэлементах с внешним фотоэффектом, которые представляют собой простые двухэлектродные вакуумные приборы (рис. 112). Один из электродов
(отрицательный) называется фотокатодом, другой (положительный) - анодом. При освещении фотокатода из него выбиваются электроны, которые притягиваются анодом, и в цепи фотоэлемента течет ток (фототок), измеряемый достаточно чувствительным прибором. Фототок прямо пропорционален световому потоку, падающему на катод, и эта пропорциональность соблюдается в очень широких пределах. Чувствительность и спектральная характеристика фотокатода практически не меняется со временем. Эти обстоятельства позволяют выполнять фотометрические измерения с помощью фотоэлементов с очень высокой точностью (иногда до 0,1%), недоступной для фотографии. Благодаря высокой точности фотоэлектрическая техника прочно вошла в практику современной астрофизики. Как известно, энергия кванта e = hv. Поэтому фотоэлектрический эффект может вызываться только излучением с частотой, превышающей
(8.10)
(закон Эйнштейна). Предельная частота n 0 называется красной границей фотоэффекта. Она зависит от материала фотокатода. Чистые металлы имеют большую работу выхода и не годятся для изготовления фотокатодов для длин волн l > 3000 Å, используемых в наземных астрономических наблюдениях и в технике. Поэтому разработаны специальные фотокатоды, имеющие сложную физико-химическую структуру, которая обеспечивает малую работу выхода. Наиболее распространенные типы современных фотокатодов - это сурьмяно-цезиевый, мультищелочной и кислородно-цезиевый. Их спектральные характеристики показаны на рис. 113. Фотокатоды для длин волн, превышающих 12 500 Å, отсутствуют. Из-за малой работы выхода фотокатод эмитирует не только фотоэлектроны, но и термоэлектроны, т.е. такие, которые из-за тепловых движений приобрели энергию, превышающую работу выхода, и смогли покинуть фотокатод. Они образуют термоэлектронный темновой ток, который мешает измерению слабых фототоков. Простые фотоэлементы с внешним фотоэффектом применяются сейчас сравнительно редко. На смену им пришли более сложные фотоэлектрические приемники фотоумножители (ФЭУ). В этих приборах используется явление вторичной электронной эмиссии: электрон, обладающий достаточной энергией и разогнанный электрическим полем, попав на поверхность с малой работой выхода, может выбить несколько электронов. Таким образом, с помощью вторичной электронной эмиссии можно получить усиление фототока. Между фотокатодом (F) и анодом (A) в ФЭУ (рис. 114) имеется некоторое количество вторичноэлектронных эмиттеров - динодов (Д1 , Д2 и т.д.). Форма и расположение всех
электронов ФЭУ, а также приложенные к ним напряжения таковы, что фотоэлектрон, вырвавшийся из фотокатода, попадает на первый динод и выбивает из него несколько электронов, которые затем попадают на второй динод и выбивают соответственно еще большее количество электронов и т.д. В результате каждый фотоэлектрон приводит к образованию лавины вторичных электронов (до 108-109) на аноде. После фотоумножителя ставится либо прибор, измеряющий средний анодный ток, либо прибор, считающий отдельные импульсы, из которых состоит анодный ток. Поскольку каждый импульс соответствует отдельному фотоэлектрону, последний способ называется методом счета электронов. Так же как и в фотоэлементах, в фотоумножителях имеется фон темнового тока, мешающий измерениям слабых световых потоков.
Фотометрические приборы, в которых в качестве приемника света используется фотоэлемент или фотоумножитель, называются электрофотометрами. На рис. 115 приведена упрощенная схема звездного электрофотометра - прибора для фотоэлектрического измерения звездных величин: а - диафрагма, которая находится в фокусе телескопа; б - выдвижной окуляр с призмой для наведения на звезду; в радиоактивный люминофор, который служит для контроля постоянства чувствительности; с - светофильтр; л - линза поля, которая проектирует на фотокатод изображение объектива телескопа; Ф - фотоумножитель; Б1 - блок питания фотоумножителя; У - усилитель; Б2 - блок питания усилителя; Э - самопишущий электроизмерительный прибор, регистрирующий показания на движущейся бумажной ленте. Наблюдатель в процессе измерений несколько раз вводит звезду в диафрагму и выводит ее. Когда звезды нет, прибор записывает отсчет от фона неба, обусловленного свечением верхней атмосферы. Этот отсчет пропорционален площади диафрагмы, поэтому диафрагму стараются брать поменьше. Когда звезда находится в диафрагме, прибор записывает суммарный отсчет от фона и звезды и при обработке наблюдатель берет разность обоих отсчетов. Сравнивая отсчеты n1 и n2 от разных звезд, можно определить разность звездных величин, и по известной звездной величине m1 одной звезды вычислить звездную величину m2 другой звезды. Чтобы исключить влияние атмосферы, надо либо сравнивать звезды, находящиеся на одном зенитном расстоянии, либо определить из специальных наблюдений коэффициент прозрачности атмосферы. Если звезды не очень слабые, то с помощью звездного электрофотометра можно получить точность 0m,005-0m,01. Пользуясь светофильтрами, можно электрофотометром определить цветовые характеристики звезд, а если ввести в оптический путь поляризационный анализатор, то можно измерять с высокой точностью степень поляризации света звезд. В последнее время в астрономических наблюдениях все шире применяются преобразователи изображения - электоонно-оптические преобразователи (ЭОП) и телевизионные системы. Электронно-оптический преобразователь (рис. 116) состоит из фотокатода Ф, электронной линзы Л и экрана Э, люминесцирующего под действием электронов.
Читать дальшеИнтервал:
Закладка: