Неизвестен Автор - Курс общей астрономии

Тут можно читать онлайн Неизвестен Автор - Курс общей астрономии - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочее домоводство. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Неизвестен Автор - Курс общей астрономии краткое содержание

Курс общей астрономии - описание и краткое содержание, автор неизвестен Автор, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Курс общей астрономии - читать онлайн бесплатно полную версию (весь текст целиком)

Курс общей астрономии - читать книгу онлайн бесплатно, автор неизвестен Автор
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если элемент светящейся поверхности S (рис. 85) излучает поток F внутри конуса К, с телесным углом W, ось которого L составляет угол j с нормалью n к S, то такой же поток пройдет и через перпендикулярную к лучу зрения площадку s = S cos j , и яркость

(7.4)

Существует важное соотношение между освещенностью, создаваемой некоторой светящейся поверхностью в данном месте, ее размерами и яркостью. Предположим, что мы наблюдаем объект S, который находится на расстоянии r и проектируется на небесную сферу в площадку s (рис. 86). Пусть яркость его равна В. Согласно определению яркости это означает, что световой поток внутри конуса с телесным углом W = 1, создаваемый 1 см2 поверхности сг в направлении нормали, численно равен В. Поток Ф внутри того же конуса от всего объекта получится умножением яркости В на площадь проекции s , т.е. Ф = Вs . В месте наблюдения весь этот поток Вs распределится по поверхности S = Wг2, и так как телесный угол W = 1 стерадиану, то S = r2. Поэтому наблюдаемая освещенность

(7.5)

Но т.е. телесному углу, под которым на небе виден объект. Поэтому

Е = Bw .(7.6)

Следовательно, максимальная освещенность, создаваемая некоторым объектом в месте наблюдения, равна его средней яркости, умноженной на телесный угол, под которым он виден на небе. Этот вывод дает простой метод определения яркости протяженных объектов с помощью телескопа и установленного в его фокусе приемника излучения, так как телесный угол со равен площади s изображения объекта, получающегося в фокальной плоскости телескопа, деленной на квадрат его фокусного расстояния F (т.е. ), а освещенность Е измеряется потоком излучения, прошедшим через объектив, деленным на площадь отверстия телескопа. Многие светила (например, звезды) так далеки от нас, что даже в самые крупные инструменты невозможно определить их угловые размеры. Такие объекты называются точечными. Пока их угловые размеры не определены какими-нибудь специальными методами, освещенность, которую они создают на Земле, является для нас единственной величиной, характеризующей мощность их излучения. Для точечных объектов, например, звезд, угловые размеры которых не удается измерить непосредственным путем, нельзя также определить и яркость. Можно наблюдать лишь поток излучения от них или создаваемую ими освещенность. В астрономии эту освещенность принято измерять в специальной логарифмической шкале - звездных величинах (этот термин никак не характеризует размеров звезд!). За интервал в 1 звездную величину (обозначается 1m) принято отношение освещенностей в 2,512... раза. Это число выбрано для удобства так, чтобы его десятичный логарифм в точности равнялся 0,4, а интервал в 5m соответствовал бы отношению в 100 раз. Условились, что звезды, освещенности от которых меньше, имеют большую звездную величину. Таким образом, освещенности от объектов .. -Зm, -2m, -1m 0m, 1m, 2m, Зm, ... образуют бесконечную убывающую геометрическую прогрессию со знаменателем 2,512. Такая шкала звездных величин близка к фотометрической системе, введенной еще в древности Гиппархом (II в. до н.э.), который разбил все звезды, наблюдаемые невооруженным глазом, на 6 классов и к первому отнес самые “яркие” из них, а к последнему - самые слабые. Итак, звездной величиной называется взятый со знаком минус логарифм по основанию 2,512 от освещенности, создаваемой данным объектом на площадке, перпендикулярной к лучам. Из определения следует, что для двух звезд, создающих освещенности E1 и Е2 , разность соответствующих звездных величин m1 - m2 удовлетворяет соотношениям

и

(7.7)

а в десятичных логарифмах

и

(7.8)

Значение m2 = 0 получится, если освещенность от второй звезды принять за единицу. Обычно нуль-пункт звездных величин принимают условно по совокупности звезд, освещенности от которых тщательно измерены различными методами. Звезда 0m создает на границе земной атмосферы освещенность 2,78×10-6 люкс, т.e. как 1 международная свеча с расстояния в 600 м. Как правило, в астрономии предпочитают иметь дело с энергетическими единицами. Для перехода к ним полезно запомнить, что звезда 0m во всем видимом спектре создает поток около 106 квантов/см2× сек или 103 квантов/см2× сек× Å в области зеленых лучей. Поскольку звездная величина характеризует измеряемый поток излучения от светила, ее определение можно распространить и на протяженные объекты. Так, например, измеряя освещенности, создаваемые Солнцем, полной Луной, планетами и т.д., можно найти соответствующие им звездные величины. В табл. 2 приведены звездные величины ряда небесных светил. Из определения шкалы звездных величин ясно, что она может быть применена как к полному излучению, так и к какой-либо определенной спектральной области.

Звездная величина, полученная на основании определения полной энергии, излучаемой во всем спектре, называется болометрической. В отличие от нее, результаты визуальных, фотографических и фотоэлектрических измерений потоков излучения позволяют установить соответственно системы визуальных, фотографических, фотоэлектрических и т.д. звездных величин.

§ 104. Некоторые сведения из молекулярной физики

Идеальный газ. Большинство астрономических объектов состоит из газа, который можно рассматривать как идеальный, так что справедливо основное уравнение состояния

(7.9)

В этой формуле р - внутреннее давление газа, r - его плотность, m молекулярный вес газа, Т - его абсолютная температура, R = 8,32×107 эрг/град× моль - универсальная газовая постоянная. Как известно, отдельные молекулы, из которых состоит вещество, находятся в беспорядочном тепловом движении. Если молекула, имеющая массу т, движется со скоростью v , то ее кинетическая энергия равна

(7.10)

Тепловая энергия тела складывается из кинетической энергии всех его молекул. Из-за частых столкновений, скорости, а вместе с ними и кинетическая энергия тепловых движений отдельных молекул постоянно меняются. Однако можно говорить о величине тепловой энергии, которая в каждый данный момент в среднем приходится на одну частицу. Величина, характеризующая тепловое состояние тела и пропорциональная средней кинетической энергии, приходящейся на одну частицу, называется температурой. Если температуру измерять в Кельвинах, а энергию в системе СГС (эрг), то средняя энергия, приходящаяся на одну молекулу газа, составляет

(7.11)

Здесь k = 1,38 × 10-16 эрг/К - постоянная Больцмана. Она представляет собой универсальную газовую постоянную R, но рассчитанную не на 1 моль, а на одну молекулу, т.е.

(7.12)

Величина k имеет очень важный физический смысл. Мы не можем сказать, сколько молекул газа в данный момент обладает каким-либо определенным значением энергии, потому что это зависит от их случайных столкновений. Однако мы можем сказать, какова вероятность того, что их энергия близка к такому-то значению. Оказывается, что k - это рассчитанная на 1°К наиболее вероятная энергия одной молекулы. Следовательно, при температуре Т большинство молекул газа должно иметь энергию близкую к величине kT. Если эта энергия равна 1 эв, то температура газа составляет

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


неизвестен Автор читать все книги автора по порядку

неизвестен Автор - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Курс общей астрономии отзывы


Отзывы читателей о книге Курс общей астрономии, автор: неизвестен Автор. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x