Игорь Скрипник - Тюнинг автомобиля своими руками
- Название:Тюнинг автомобиля своими руками
- Автор:
- Жанр:
- Издательство:Array Литагент «АСТ»
- Год:2012
- Город:Москва
- ISBN:978-5-17-072561-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Игорь Скрипник - Тюнинг автомобиля своими руками краткое содержание
Для широкого круга читателей.
Тюнинг автомобиля своими руками - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
На практике для правильного выбора ТК, предназначенного для наддува автомобильного двигателя сравнительно небольшой мощности, необходимо знать следующие параметры двигателя: рабочий объем; максимальную частоту вращения KB; максимальную мощность; внешнюю скоростную характеристику по мощности.
При сжатии в нагнетателе или компрессоре воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а следовательно и кислорода, по массе помещается меньше, чем могло бы поместиться при отсутствии нагревания. Чтобы создать условия для сгорания в цилиндре большего количества топлива, принимают меры для увеличения коэффициента наполнения n v. Для этого сжимаемый в нагнетателе воздух перед подачей его в цилиндры двигателя предварительно охлаждается в холодильнике, который стал неотъемлемой частью большинства двигателей с наддувом.
Холодильники наддувочного воздуха бывают двух типов. В одних холодильниках охлаждение наддувочного воздуха производится путем обдувания их оребренной поверхности набегающим воздушным потоком, в других функцию охладителя выполняет жидкость системы охлаждения двигателя. При использовании в качестве охладителя потока набегающего воздуха для повышения эффективности охлаждения холодильник должен устанавливаться рядом с радиатором системы охлаждения или перед ним. Холодильник второго типа может устанавливаться в любой зоне объема моторного отсека, однако предпочтение следует отдавать такому его расположению, при котором путь наддувочного воздуха от нагнетателя или турбокомпрессора до цилиндров двигателя будет более коротким и без резких изменений направления движения. С точки зрения экономии места в моторном отсеке предпочтение следует отдать холодильнику, в котором охлаждение производится жидкостью системы охлаждения, так как он при одинаковой эффективности охлаждения имеет меньшие габариты. Приблизительные расчеты показывают, что понижение температуры наддувочного воздуха на 10 °C позволяет увеличить его плотность примерно на 3 %. Это, в свою очередь, позволяет увеличить мощность двигателя примерно на такой же процент, так что, к примеру, охлаждение воздуха на 33 °C даст увеличение мощности приблизительно на 10 %.
С другой стороны, охлаждение воздушного заряда приводит к понижению температуры в начале такта сжатия и позволяет реализовать ту же мощность двигателя при уменьшенной степени повышения давления в цилиндре. Следствием этого является уменьшение температуры отработавших газов, что положительно сказывается на уменьшении тепловой нагрузки деталей камеры сгорания, а в бензиновых двигателях, кроме того, понижает склонность смеси к детонационному сгоранию. Эта возможность реализуется преимущественно в двигателях с турбонаддувом для дорожных автомобилей. Так как при уменьшении давления наддува требуется меньшая мощность на привод компрессора, то благодаря этому в большинстве случаев возможно использование турбины меньших размеров. Оба мероприятия (уменьшение степени повышения давления и уменьшение размеров турбины) улучшают типично слабые стороны двигателя с турбонаддувом, а именно: позволяют увеличить крутящий момент при низких частотах вращения KB и сократить время выхода на новый режим работы при резком ускорении. Оба этих фактора для эксплуатации двигателя с наддувом в дорожных условиях, конечно, намного важнее, чем достижение высокой максимальной мощности.
В том же направлении оказывают влияние и прочие мероприятия, целью которых является охлаждение наддувочного воздуха в бензиновых двигателях. Пониженные благодаря охлаждению наддувочного воздуха требования к значению октанового числа бензина позволяют увеличить базовую степень сжатия и увеличить угол опережения зажигания. Все вместе это улучшает характеристику крутящего момента и приемистость двигателя с турбонаддувом.
Покрытие поршней
Современная технология может также обеспечить защиту деталей двигателя, подверженных термическим нагрузкам, особенно поршней, путем использования структурного покрытия или специальных изолирующих материалов. Эти материалы могут быть нанесены на поверхности деталей, что добавляет материалам желаемые характеристики, которыми они изначально не обладают. Эти покрытия можно разделить на два основных класса: молекулярные твердые покрытия и керамика.
Твердое покрытие используется или связывается на молекулярном уровне с помощью процесса, подобного металлизации. Очевидным фактом является то, что эти покрытия создают очень жесткую поверхность, которая, возможно, отражает тепло «механически», т. е. молекулы высокой энергии, налетающие на поверхность, отскакивают от нее, не отдавая большую часть энергии, как это было бы в случае их поглощения.
Керамика хорошо известна благодаря своим изолирующим свойствам. Она поглощает тепло, но только в слоях, близких к поверхности. Эти «субслои» материала действуют как очень эффективные изоляторы, «удерживая» тепло от проникновения в материал. Нанесение керамического состава на верхнюю часть поршня предотвращает поглощение тепла головкой поршня. Тепло, которое не поглощается, удерживается в камере сгорания и при этом увеличивается давление газов в камере сгорания. Это дает дополнительное усилие на поршень, направляя его вниз, что в свою очередь обеспечивает большую отдачу мощности. Численные динамометрические испытания на многих гоночных двигателях, оснащенных поршнями с покрытием, показали, что возможно увеличение мощности на 4–8%.
Другим преимуществом поршней с высокотемпературным покрытием является то, что у них увеличена надежность материала. Головка поршня с покрытием гораздо менее чувствительна к высокому тепловыделению, связанному с детонацией. При детонации часть пока не воспламененной сжатой рабочей смеси поджигается из-за слишком высоких давлений или температур перед тем, как образуется нормальный фронт пламени от смеси. При этом образуются области с высокой температурой в объеме камеры сгорания. Так как жесткость алюминия быстро уменьшается при возрастании температуры, особенно выше 120 °C, верхняя плоскость поршня может разрушиться за несколько секунд, если дать детонации продолжаться. Однако изолирующее покрытие на головке поршня в некоторых условиях предотвращает повреждения при воздействии детонации в течение 20–30 минут.
Жесткость поршня с покрытием постоянно увеличивается благодаря пониженной рабочей температуре. Это в сочетании с тем фактом, что верхнее компрессионное кольцо может располагаться ближе к вершине поршня, обеспечивает лучшее уплотнение в цилиндре, и преимущества поршней с покрытием становятся более явственными.
Читать дальшеИнтервал:
Закладка: