Алексей Ардашев - Снайперская война
- Название:Снайперская война
- Автор:
- Жанр:
- Издательство:Array Литагент «Яуза»
- Год:2010
- Город:Москва
- ISBN:978-5-699-41782-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Ардашев - Снайперская война краткое содержание
Глубокое исследование снайперской войны на протяжении двух столетий – с позапрошлого века до наших дней. Анализ развития снайперского дела в обеих мировых войнах и многочисленных локальных конфликтах, на поле боя и в тайных операциях спецслужб. Настоящая энциклопедия снайперского искусства – не ремесла, а именно искусства! – ведь точность выстрела зависит от десятков факторов: времени суток и температуры воздуха, скорости и направления ветра, расстояния до цели, как падет свет, куда перемещаются тени и т. д., и т. п. Исчерпывающая информация о вооружении и обучении стрелков, их тактике и боевом применении, снайперских дуэлях и контрснайперской борьбе, о прошлом, настоящем и будущем самого жестокого из воинских искусств.
Снайперская война - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Тенденции и перспективы
Основное направление современной западной военной мысли – дистанционная война без непосредственного контакта с противником. В итоге это вылилось в концепцию «безопасной войны», когда оператор, сидя в полной безопасности в тылу, только нажимает кнопочки, а безлюдные роботизированные комплексы воюют на передовой.
Дистанционно управляемый снайперский комплекс
Выше уже описывался проект TRAP американской фирмы Precision Armed Remotes Inc., предложенный в 1998 году. Установка включает в себя снайперскую винтовку калибра 7,62 мм, установленную на специальной платформе и оснащенную видеоаппаратурой для слежения за местностью и прицеливания. Фактически это дистанционно управляемая снайперская винтовка. Блок управления может быть вынесен в сторону от позиции платформы на расстояние до ста метров, хотя ничто не мешает управлять ею хоть с другого конца земного шара… Все данные о цели и внешних условиях для стрельбы (скорость и направление ветра, угол места цели, скорость перемещения цели) в течение 1 секунды обрабатываются компьютером, который выдает необходимую точку прицеливания, оператору остается только нажать на тумблер управления спусковым механизмом. Вся установка весит 9,13 кг, что позволяет переносить ее и устанавливать на местности одному человеку. Такие установки возможно эффективно использовать при проведении специальных операций по борьбе с терроризмом.

Снайперская винтовка, обвешанная прицелами, лазерными дальномерами, тактическими фонарями и прочими устройствами
Универсальный механический солдат
В последнее время тема использования боевых роботов обсуждается довольно активно, и порой в довольно странном ключе. Существует даже мнение, что разработки в этом направлении бессмысленны, а «тупое железо» в принципе недееспособно: оно рухнет в первую же воронку, не сумев ее объехать, оно будет расстреливать кошек, не сумев отличить их от человека, управление им легко перехватят хакеры, а электромагнитное оружие превратит его в хлам.
Между тем потенциальное поле боя уже до предела «насыщено» ПТРК, автоматическими гранатометами и автоматическими пушками и много чем еще. В итоге масштабы потерь в «большой» войне между примерно равными противниками будут огромными, причем даже в случае короткого конфликта. Использование же «механических солдат» дает множество преимуществ. Во-первых, оно очевидно позволяет снизить потери личного состава. Во-вторых, неживая сила обладает куда большей устойчивостью и «ремонтопригодностью», чем живая. В-третьих, машины не знают страха. В-четвертых, они могут отчасти компенсировать недостаток рекрутов. Наконец, автоматы имеют ряд дополнительных функций.
Тем не менее боевые роботы долго были чем-то из области фантастики – вследствие состояния «железа» и программного обеспечения. Пока действия роботов ограничивались набором жестких программ, даже просто автономное передвижение в неоднородной наземной среде оказывалось невозможным. Равным образом компьютеры не были способны обеспечить эффективное распознавание образов.
Однако в 1980-х годах электроника начала стремительно уменьшаться в размерах, а чуть ранее (в 1975 г.) появилась многоуровневая нейронная сеть. В итоге стало возможным создать «обучаемые» автоматы, способные принимать хотя бы элементарные «самостоятельные» решения (без чего невозможно, например, движение по пересеченной местности). Одновременно появилась аппаратура наблюдения высокого разрешения и цифровые линии связи.
В итоге в США начали одна за другой появляться роботизированные машины: Roboart I, «Праулер», «Демон» и др. Однако первые роботы были чрезвычайно несовершенны – так, всемирной сенсацией 1985 года стал рекорд робота AVL, проехавшего по серпантину… 1 км. Роботическое «зрение» и распознавание образов позволяло максимум зафиксировать подозрительный силуэт. Собственно, к этим реалиям и апеллируют скептики. Однако с тех пор разработки шли полным ходом – особенно после того как в 2000-х годах сократившийся было военный бюджет США вновь раздулся до эпических масштабов.
Темпы прогресса нагляднее всего видны по результатам гонок роботизированных машин, организуемых DARPA (внешнее управление роботом исключается). В 2004 году гонка в пустыне Мохаве закончилась полным провалом: 7 машин из 15 вообще не смогли уйти со старта, ни одна не дошла до финиша, а максимальное достижение сводилось к позорным семи милям. Однако уже год спустя 4 машины из 23 прошли всю 132-мильную дистанцию. Состязания 2007 года были перенесены в специально построенный городок, с дополнительной опцией в виде 30 обычных машин – для создания плотного движения. Роботы должны были преодолеть 90 км по улицам за 6 часов, при этом от них требовалось проехать множество перекрестков и поворотов, заехать на парковку и выехать из нее, выполнить ряд других маневров. Результаты: из 36 участников отборочный тур в пустыне прошли 11, до финиша добралось 6, а 3 машины уложились в отведенное время, причем с запасом. В 2009 году скорость передвижения роботов в «населенной» городской среде достигла уже 50 км/ч – прогресс налицо.
Разумеется, боевая машина должна еще как минимум эффективно распознавать образы. И если еще недавно простое опознание «неправильно» написанных цифр было весьма нетривиальной задачей, то теперь распознавание лиц в произвольном ракурсе и движении – уже пройденный этап. Сейчас речь идет уже о считывании весьма сложных эмоций. Существуют и роботы, способные опознать себя в зеркале, при этом не спутав свое отражение с отражением однотипной машины. Иными словами, падение в воронки и расстрел кошек отменяются.
Эти успехи, в свою очередь, базируются на ключевом отличии современных нейронных сетей от обычных неймановских компьютеров. «Нейманы» нуждаются в исчерпывающих программах-инструкциях и максимум могут переходить от одного «пакета инструкций» к другому (адаптивные роботы). А интеллектуальным «нейронам» задача может ставиться в общем виде, без детальных инструкций. Простейший случай: «Езжай в такой-то пункт по такому-то маршруту, а как конкретно ты будешь разбираться со встретившимися препятствиями, меня не волнует»; возможны случаи и посложнее.
Это, в свою очередь, радикально меняет функции оператора. Если раньше он должен был просто дистанционно «рулить» роботом в режиме нон-стоп, то теперь – лишь ставить задачи и осуществлять общий контроль. В особо сложных ситуациях он может давать машине дополнительные инструкции. Равным образом робот, столкнувшись с нештатной ситуацией, может сам запросить указаний у оператора.
Читать дальшеИнтервал:
Закладка: