Александр Волков - Артиллерия
- Название:Артиллерия
- Автор:
- Жанр:
- Издательство:Воениздат
- Год:1953
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Волков - Артиллерия краткое содержание
Книга может быть использована как пособие на занятиях по артиллерии с воспитанниками артиллерийских подготовительных училищ, инженерно–техническим составом артиллерии, а также с солдатами и сержантами всех родов войск.
Артиллерия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В этом и заключается явление, называемое деривацией. Величина деривации тем больше, чем продолжительнее полет снаряда. Снаряд 76–миллиметровой пушки при стрельбе на 5 километров отклоняется вправо на 5 метров, а при стрельбе на 10 километров – уже на 50 метров. При стрельбе на 10 километров из 122–миллиметровой гаубицы деривация получается еще больше–110 или даже 310 метров – в зависимости от того, будем ли мы стрелять при углах возвышения меньше 45 или больше 45 градусов.
Таким образом, вследствие деривации траектория снаряда представляет собой кривую не только в вертикальной плоскости, но и в горизонтальной (рис. 162).
Если снаряд вращается справа вверх налево, как у французских орудий, по тем же причинам он отклоняется влево от первоначального направления.
Невращающиеся снаряды (например мины современных минометов), понятно, не имеют деривации, так как деривация связана именно с вращением снаряда.
Часто задают такой вопрос: ну, а будет ли деривация у снаряда, выпущенного вертикально вверх? На этот вопрос надо ответить так: при стрельбе строго вверх деривация отсутствует, так как действие силы тяжести на снаряд, выпущенный вертикально, выразится только в том, что его поступательная скорость будет постепенно уменьшаться, давление же воздуха на корпус такого снаряда будет оставаться равномерным со всех сторон.
Нарезной снаряд

Рис. 162. Так выглядит траектория снаряда, летящего в воздухе, если на нее посмотреть сверху
Вернемся теперь к вопросу – почему же не сделать очень длинный снаряд, так сказать, снаряд–копье?
Оказывается, такой снаряд был бы все же недостаточно устойчив в полете.
Чтобы обеспечить ему устойчивость, надо было бы вращать его еще раза в 2–3 быстрее, чем вращается современный снаряд.
Для этого и нарезы в орудии надо было бы сделать раза в 2–3 круче, чем их делают теперь.
Но тогда мягкий медный ведущий поясок снаряда не выдержал бы громадного давления, какое пришлось бы на его долю при такой крутой нарезке и при большом весе длинного снаряда, – он был бы сорван нарезами в канале ствола.
Нужны, значит, какие–то новые технические приемы, чтобы обеспечить такому длинному и тяжелому снаряду достаточно быстрое вращение.
Что можно сделать в этом направлении?
Еще в шестидесятых годах XIX века испытывался многоугольный (или, как говорят, полигональный) снаряд (рис. 163). Разумеется, и канал орудия, предназначенного для стрельбы этим снарядом, представлял собой в сечении многоугольную призму, несколько скрученную, чтобы придать вращение этому снаряду.
В свое время это предложение не нашло широкого применения, а вскоре и вовсе было забыто.
Были и другие предложения. Уже после первой мировой войны были изготовлены опытные снаряды с готовыми выступами, или, иначе, нарезные снаряды в 10 калибров длиной (рис. 164). Снаряд этот, казалось, имел большие преимущества перед старыми: поперечная нагрузка у нарезного снаряда была вдвое больше, чем у обычного, а поэтому и летел он заметно дальше. Объем внутренней каморы нарезного снаряда был примерно вдвое больше, чем у старого снаряда, а потому в нем помещалось значительно больше взрывчатого вещества, чем в старом.

Рис. 163, Полигональный (многоугольный) снаряд
Но изготовлять снаряды с готовыми нарезами трудно и дорого, а заряжать орудие таким снарядом долго и неудобно: уже во время заряжания снаряд должен двигаться своими выступами по нарезам орудия.
Поэтому нарезные снаряды не нашли широкого применения, и в течение всей второй мировой войны никто не стрелял такими снарядами. В современных сражениях снаряды расходуются миллионами, промышленность должна изготовлять их в огромных количествах; поэтому снаряды должны быть просты в изготовлении и возможно более дешевы; а дорогие и сложные в производстве нарезные снаряды не удовлетворяют этим требованиям: вот почему они относятся к тем многочисленным остроумным предложениям, которые, однако, не находят применения на практике.

Рис. 164, Нарезной снаряд
Снаряд с оперением
Во второй мировой войне широкое применение получили снаряды с оперением – мины.
Вспомните древние стрелы, которыми в те времена, когда еще не было огнестрельного оружия, воины и охотники стреляли из лука; вы, несомненно, видели такую стрелу, если не в музее, то хотя бы на рисунке. Ее устойчивости на полете добивались тем, что снабжали ее оперением. Оперение оказывало во время полета стрелы такое же действие, как руль у лодки во время ее движения: если руль поставлен прямо, то и лодка идет прямо. Так же летела и стрела, – оперение играло роль руля, поставленного прямо.
Мысль изготовить снаряд с оперением появилась впервые у русских артиллеристов осажденной японцами крепости Порт–Артур в 1904 году. Изготовив мины, которые не помещались в ствол орудия, изобретатели С. Н. Власьев и Л. Н. Гобято должны были подумать и о том, как сделать эти мины устойчивыми на полете; они снабдили каждую мину стабилизатором из четырех железных перьев (рис. 165).

Рис. 165. Первый артиллерийский снаряд с хвостовым оперением – шестовая мина к миномету С. Н. Власьева и Л. Н. Гобято
Эта идея русских артиллеристов была использована при создании минометов во время первой мировой войны (взгляните на рис. 180 на стр. 212), и с тех пор и до наших дней минометы стреляют оперенными снарядами–минами.
Но современная мина имеет уже не 2 пера, как древняя стрела, и не 4, как мина защитников Порт–Артура или времен первой мировой войны, а значительно больше: например, у мины 82–миллиметрового миномета 6 или чаще 10 перьев, а у мины 120–миллиметрового миномета – 12 перьев. Такое количество перьев хорошо обеспечивает устойчивость мины на полете: 12 перьев – это как бы 12 рулей, каждый из которых помогает мине быть устойчивой во время полета.
Оперенная мина так же "следит за траекторией", как и вращающийся снаряд: как только под действием силы тяжести мина начинает опускаться под линией бросания, давление воздуха на перья стабилизатора станет больше с одной стороны, чем с другой, а из–за этого хвост мины повернется, – ось мины снова совместится с касательной к траектории (рис. 166).

Рис. 166. Действие силы сопротивления воздуха на летящую мину: хвостовое оперение выравнивает мину на полете, заставляет ее головную часть "следить" за траекторией и этим обеспечивает полет мины головой вперед
Читать дальшеИнтервал:
Закладка: