David Laserna - Гюйгенс Волновая теория света. В погоне за лучом
- Название:Гюйгенс Волновая теория света. В погоне за лучом
- Автор:
- Жанр:
- Издательство:Де Агостини
- Год:2015
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
David Laserna - Гюйгенс Волновая теория света. В погоне за лучом краткое содержание
Гюйгенс Волновая теория света. В погоне за лучом - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

РИС. 1

РИС. 2

РИС.З
В конце октября 1652 года Гюйгенс признавался ван Схотену: «Я полностью поглощен диоптрикой». Этим термином в 1611 году Кеплер обозначил область, математически исследующую траектории луча света при прохождении через группу линз. Непротиворечивая теория, способная объяснить все явления, связанные с взаимодействием света и материи, появилась только в XX веке. Но для создания оптических инструментов достаточно воспользоваться приближением геометрической оптики, в рамках которого свет рассматривается как пучок прямых линий. Ниже мы постараемся объяснить, в каком состоянии находилась диоптрика до того, как ею занялся Гюйгенс.
Свет преломляется или отклоняется, пересекая границу двух сред, которые в состоянии пропустить его. При этом часть света отражается — этот аспект мы не будем принимать во внимание, но он ограничивает количество линз, которые можно разместить в одной оптической системе. Чем больше стекол должен пересечь свет, тем больше его потеряется по пути и тем слабее будет изображение.

РИС. 4

РИС. 5
Явление рефракции можно наблюдать в любой прозрачной среде, когда солнечные лучи проходят через воду, воздух и стекло. Угол отклонения зависит от каждой пары сред. Так, если луч проходит от стекла к воздуху (см. рисунок 1), угол будет больше (β > а), а если в обратном направлении, от воздуха к стеклу (см. рисунок 2), то меньше.
Проходя через прозрачное тело, лучи света дважды пересекают границу сред, то есть дважды преломляются. Если эти границы являются плоскими и параллельными друг другу, при отклонении лучи смещаются в сторону (d), как в случае с оконным стеклом (см. рисунок 3).
Если граница не плоская, то лучи будут расходиться беспорядочно, в разных направлениях, в зависимости от точки пересечения (см. рисунки 4 и 5). Эти отклонения можно организовать, придав лучам определенное направление, и мы получим некоторое изображение.
Примем, что окружающие нас предметы испускают видимый свет. В некотором смысле так и есть, хотя это условное испускание, являющееся результатом реакции на свет, который на них падает (например, от Солнца или лампы). Атомы, из которых состоит материя, взаимодействуют с фотонами — частицами света, — доходящими до поверхности, и в ходе этого процесса высвобождают новые фотоны.

РИС. 6

РИС. 7

РИС. 8
Качество света, испускаемого таким образом, зависит от двух факторов: от того, как свет дошел до материи, и от самой ее структуры (какие атомы ее образуют и как они организованы в пространстве). Осветить яблоко солнечными лучами или красным искусственным светом — это не одно и то же, как не одно и то же — осветить яблоко, хрустальную пепельницу или зеркало. Мы можем положить под лампу книгу или апельсин. Оба предмета получат одинаковый свет от этого источника, но будут взаимодействовать с ним по-разному и отражать разные световые лучи. Эти различия дают нам информацию о том, на какой именно предмет мы смотрим. Если нам нужно изучить процесс образования изображений, то мы должны исходить из видимого света, отраженного телами.
Рассмотрим пример с синим карандашом на рисунке 6 (на предыдущей странице). С каждой точки его поверхности в разных направлениях исходят световые лучи. В них содержатся данные о форме и фактуре карандаша. Лучи, исходящие из точки А, взаимодействуют с синим грифелем, который поглощает зеленый и красный цвета. Лучи, исходящие из С, взаимодействуют со слоем зеленой краски, которая поглощает красный и синий. Наконец, лучи, исходящие из В, взаимодействуют с красной краской, которая поглощает синий и зеленый. На все точки карандаша попал одинаковый свет, но лучи, отраженные этими точками, различаются, и эти различия дают информацию о точках. Обычно эти лучи рассеиваются в пространстве. Если мы поставим перед карандашом экран L, на каждую точку его поверхности будут падать лучи света, отраженные от поверхности карандаша. Например, на точку К, как и на любую другую точку экрана, например на К' попадут синие, зеленые и красные лучи. Таким образом, все точки L получат один и тот же свет от карандаша и не дадут нам никаких данных о том, как выглядит предмет.
Если же между экраном и карандашом мы разместим стеклянную линзу (см. рисунок 7), ситуация изменится кардинальным образом. Все синие лучи, отраженные точкой А и доходящие до линзы, сойдутся в точке экрана A', которая тоже будет синей. То же произойдет с красными лучами точки B, которые дойдут до красной точки В', и с любой другой точкой видимой поверхности карандаша. Свет от предмета больше не рассеивается равномерно по всей поверхности экрана. Линза благодаря своей геометрии и рефракции позволяет разделить лучи — она соединяет каждую точку карандаша с определенной точкой экрана. В результате на нем проецируется перевернутое изображение карандаша, которое дает информацию о предмете, полученную при взаимодействии с ним света. Эту передачу данных при помощи света мы называем видением, ведь в наших глазах имеются линзы, проецирующие изображение на светочувствительные клетки сетчатки.
В отсутствие экрана, сетчатки или пластины из светочувствительного материала лучи будут пересекаться за линзой, в точках А', В’, С и других и продолжат свой путь, не взаимодействуя друг с другом (см. рисунок 8). Совокупность этих точек формирует модель своего изображения, подобную (обратную и другого масштаба) той, что отражается от поверхности карандаша.

РИС. 9

РИС. 10
Читать дальшеИнтервал:
Закладка: